
Optimal Inflation Targeting 
with Anchoring 

Thomas R. Michl and Robert Rowthorn 

June 2023
(Updated November 2023) 

WORKINGPAPER SERIES
Number 581 

P
O

L
IT

IC
A

L
 E

C
O

N
O

M
Y

 
R

E
S
E
A

R
C

H
 IN

S
T

IT
U

T
E
 



Optimal Inflation Targeting With Anchoring

Thomas R. Michl
Emeritus Professor
Colgate University

Robert Rowthorn1

Emeritus Professor
Cambridge University

November 1, 2023

1Corresponding addresses: Thomas Michl (tmichl@colgate.edu), Robert Rowthorn
(rer3@cam.ac.uk). Paper forthcoming in the Review of Keynesian Economics. The
authors thank Duncan Foley, Daniele Tavani, Leila Davis, Deepankar Basu, Roumi
Zlateva, Rich Higgins, David Vines, and two anonymous referees of this journal for
helpful comments on earlier drafts with the usual disclaimer that we take responsibility
for all errors or views.



Abstract

Optimal Inflation Targeting With Anchoring
by Thomas R. Michl and Robert Rowthorn

JEL E31
Keywords: Taylor Rule, Taylor Principle, sacrifice ratio, central bank loss

function

This paper presents an alternative foundation to the standard quadratic loss
function characterizing central bank inflation policy. The alternative treats high
employment as a social benefit. In recognition of the inherent asymmetry of the
output gap, two self-imposed constraints provide guardrails that rule out excess
unemployment and opportunistic reflation. The loss function includes a novel
reverse discounting mechanism that penalizes the bank for more sustained infla-
tion gaps that could undermine confidence in the central bank’s target. In the
absence of anchoring, the central bank is obliged to use economic slack to accom-
plish a disinflation but the presence of anchoring creates greater policy flexibility
freeing it from the tyranny of the sacrifice ratio. The central bank’s optimal
policy differs dramatically from the standard Taylor Rule recommendation in
choosing policy plans with higher employment, in its willingness to overshoot
inflation targets, and in avoiding excess unemployment, all while observing the
discipline needed for successful inflation targeting.



This paper characterizes the decision problem of what we will refer to as
a socially responsible central bank faced with temporary shocks to inflation or
aggregate demand. The problems of disinflation and reflation are not as sym-
metrical as they appear in the conventional treatment of optimal policy sum-
marized by the famous Taylor Rule. The microfoundation for the Taylor Rule is
a quadratic loss function that treats a high-pressure labor market with employ-
ment above its inflation-neutral level as equivalent to a depressed labor market
with excess unemployment.1 The loss function pursued by our socially responsi-
ble central bank would recognize that the former represents a social benefit and
plan accordingly. The paper proposes one such loss function and explores its
implications for macro-policy. One innovation is that the central bank weighs
losses imposed by inflation gaps (deviations from target) that are incurred in
the distant future more heavily than gaps incurred in the near future. This is
because persistent gaps jeopardize the confidence that embeds anchoring in the
inflation process.

Because it uses the full flexibility made possible by inflation anchoring the
optimal policy winds up being dramatically at odds with the plans recommended
by a standard Taylor Rule derived from a quadratic loss function. This efficiency
gain shows up concretely in greater attention to employment gains, principled
resistance to using excess unemployment to speed up disinflation, and more tol-
erance for temporary inflation gaps, all without giving up the discipline required
of an inflation-targeting regime. In our model the central bank optimizes with
some constraints chosen through its own context-dependent assessments of the
costs and benefits of output and inflation gaps, including the risk that persistent
breaches of these constraints could jeopardize the degree to which inflation is
anchored to the policy target. Like the medical arts, central banking combines
judgment and rigor.

1 Background

In this paper, the central bank operates in a standard three-equation environ-
ment. The three-equation model which informs both economic pedagogy and
policy formation can actually be reduced to a two-equation model: the Phillips
curve and the central bank’s loss function form a self-contained system. These
two equations characterize the sequence of optimal levels of output and inflation
rates that we will call the policy plan. The third equation, the IS-curve, can
be partitioned off to provide guidance on how to achieve a given policy plan
through interest rate policy. The paper focuses on the policy plan.

We make the following assumptions: First, there is a well-defined and unique
inflation-neutral level of output and employment that does not respond to tem-
porary shocks; hysteresis or path dependence is absent.2 Second, the central

1For an accessible explanation of the standard approach, see Carlin and Soskice (2015,
Chs. 3, 13). More extensive discussion can be found in Woodford (2003).

2For the implications of the Taylor Rule in a three-equation model in the presence of path
dependence, see Michl (2018). For an alternative policy rule that compensates for the presence

1



bank has considerable power in regulating aggregate demand with a lag so that
levels of output can be chosen with confidence. Problems associated with the
effective lower bound or interest rate pessimism (“pushing on a string”) are put
to one side. We leave open the open the option of using fiscal policy. Third, the
labor force and capital stock are predetermined and remain constant through
time. We focus on the intensity of their utilization and ignore log-run issues of
growth and distribution.

Fourth, the inflation process is anchored to the central bank’s official inflation
target. This assumption is fairly well supported by empirical research on the
Phillips curve (Blanchard, 2016; Ball and Mazumder, 2011) and turns out to
have enormous importance for central banking. Indeed, anchoring represents a
social resource that gives policy makers considerable flexibility in pursuing the
twin goals of price stability and maximum employment proscribed in the U.S.
by the Humphrey-Hawkins Full Employment Act.

These assumptions are widely accepted in the professional debates, policy
circles, textbook presentations, and public forums that one hopes will be in-
fluenced by any results we obtain. It is noteworthy that economists like Greg
Mankiw (2006) who have served in policy-making capacities report that actual
deliberations do not involve highly sophisticated economic modelling or high
theory: policy making is more like engineering than pure science.

The standard approach to formulating a monetary policy regime (such as the
Taylor Rule) models the central bank using a quadratic loss function. The bank
minimizes the weighted sum of the squared inflation and output gaps, defined
relative to an inflation target, πT , and an inflation-neutral equilibrium level of
output, yneut.

3 The assumption is that the central bank’s interest rate policy
has considerable control over the level of demand, so that the path of interest
rates can be backed out (e.g. as a Taylor Rule) of the optimal policy plan for
output and inflation. An expectations-augmented Phillips curve represents the
constraint in this problem which in the standard approach (Carlin and Soskice,
2015, Ch. 13) is solved statically period-by-period.4 This approach leads to
the recommendation that an inflation shock needs to be absorbed by aggressive
demand contraction. At best, the central bank might simply choose to reduce
demand to its neutral level (if no weight is assigned to the inflation gap). But
generally, this approach calls for some slack (aka unemployment) to stabilize
inflation.

[Figure 1 goes here. Figures appear at end of paper]

of path dependence in a three-equation setting, see Michl and Oliver (2019). Both these efforts
accept the standard quadratic loss function which is in question in the current paper.

3Formally, the loss function with equal weights on both gaps would be (πt − πT )2 + (yt −
yneut)2. Assigning different weights to these gaps leads to alternative policy rules. The
original Taylor (1993) Rule was not explicitly based on optimization which only became de
rigeur in subsequent writing.

4There is a dynamic optimization version that has been championed by Janet Yellen (2012),
for example, but it accepts the quadratic loss function. For details of how Fed economists
solve the optimal control problem, see Brayton et al. (2014). Significantly, these efforts do not
use an expectations-augmented Phillips curve with anchoring and instead adopt some form of
perfect foresight.
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Figure 1 identifies four quadrants centered on the long-run equilibrium formed
by the inflation target, πT , and the inflation-neutral level of ouput, yneut. The
standard approach advocates a response to any shock that mainly restricts the
policy plan to quadrants II and IV. An inflationary shock requires the central
bank to choose output levels in the disinflation zone (yt < yneut) in quadrant II
for example.

As a description of how central banks work,5 the quadratic loss function
makes some sense since their governing bodies are sensitive to political pres-
sure when they miss their inflation target (e.g., from finance capital when they
overshoot and from workers’ representatives when they undershoot), and they
are probably averse to running a high-pressure labor market since they believe
it will eventually raise inflation and require future retrenchment. But a cen-
tral bank accountable to a well-organized working class and other community
organizations, say in Robert Heilbroner’s “slightly imaginary Sweden,” would
surely reject this loss function. It treats high employment as equally costly
as unemployment, ignoring that it puts workers in a good bargaining position
where they can enjoy the benefits of a high-pressure labor market. It should
be treated as a gross benefit and entered into the loss function with a negative
sign. In other words, there is no reason to prevent the policy plan from entering
quadrant I (defined to include y = yneut) in Figure 1.

2 Model

The Phillips curve takes the following form:

πt = πR
t + α(yt − yneut)

where π is inflation, y is output, yneut is the potential or inflation-neutral level
of output, and α is the sensitivity of inflation to slack. Subscripts represent time
in the policy plan (i.e., in an ex ante sense), with initial conditions specified at
t = 0. We implicitly assume that employment depends mechanically on output
through some sort of Okun’s Law with constant labor productivity, and will
freely use employment and output as virtual synonyms.

Inflation depends on a reference rate, πR
t , that is normally described as the

expected rate of inflation. It is preferable to call it a reference rate because
we will treat it as a kind of state variable that is embedded in the practices
and institutional structures (such as cost-of-living clauses) governing wage and
price setting.6 It makes some sense following Carlin and Soskice (2018), for
example, to think of bargaining over wages using the last realization of inflation

5A few writers (Woodford, 2003) think of the traditional loss function as some kind of
social welfare function, which does not seem very convincing given the fact that it treats high
employment as a social cost. To be clear, in this paper the loss function we use reflects the
judgments of the central bank and is not a social welfare function.

6One of the defining characteristics of the structuralist macroeconomic (Taylor, 2004) ap-
proach this paper adopts is its rejection of methodological individualism and recognition that
few really important phenomena can be reduced to individual rational choice.
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(modified by some anchoring) as a focal point for negotiations, even though the
participants themselves may have very different private expectations, because
it economizes on transactions costs.

We will model πR
t as an adaptive process anchored to the central bank’s

target rate of inflation, πT , as in

πR
t+1 = χπT + (1− χ)πt

where χ is the degree of anchoring and 0 ≤ χ ≤ 1. Its complement to one,
(1 − χ), is sometimes called the degree of inertia. The assumption that the
coefficients on the right-hand side sum to unity ensures homogeneity.7

We take the degree of anchoring to be a given. There is a rich literature
on the evolution of institutions such as indexation which has long been seen
as a source of inflation inertia that reduces central bank flexibility, particularly
in Latin America (Oreiro and Santos, 2023). Our emphasis on the value of
preserving anchoring is consistent with that concern.

Combining the above equations yields the following dynamic equation

πt+1 − πT = (1− χ)(πt − πT ) + α(yt+1 − yneut). (1)

The above equation throws a light on the intrinsic stability of the inflationary
process. Suppose that α(yt − yneut) is constant and equal to c for t ≥ 1. If
0 < χ < 1 the above equation has the solution

πt − πT = (1− χ)t
(
π0 − πT − c

χ

)
+

c

χ

Thus, inflation converges to πT+ c
χ . Anchoring makes the inflationary process

stable. Written out in terms of next period’s inflation and output (the t+ 1
subscript) these equations reflect the viewpoint of a forward-looking bank which
sets the interest rate today that determines (with a lag) next period’s output
level.

The standard loss function needs to be modified in two ways. First, as al-
ready noted the employment gap needs to enter it with a negative sign. This
removes one rationale for using the quadratic form (treating both gaps symmet-
rically), and raises the question of how to specify the gain associated with high
employment. There doesn’t seem to be any harm in assuming that it is linear.8

On the other hand, it makes sense to keep the quadratic form for the inflation
gap since large spikes in inflation are a source of distress, and because low
inflation reduces the ability of the central bank to control the real interest rate.
A small amount of inflation is a good thing, but not too much. The central bank
target is the ideal, and deviations from it in either direction are undesirable.

7This formalization of adaptive expectations with anchoring was proposed by Carlin and
Soskice (2015, Ch. 4). For empirical estimates of a Phillips curve using this treatment, see
Ball and Mazumder (2011).

8Barro and Gordon (1983b) work with an objective (rather than a loss) function and make
it linearly increasing in output which in their case leads to time inconsistent inflation.
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Second, the central bank needs an incentive to avoid the temptation to
persistently ignore its own target rate of inflation, thereby eroding the confidence
that underwrites anchoring the inflationary process. Anchoring gives the central
bank a lot of freedom to maneuver and is a public resource worth preserving.9

Indeed, it is a little like a good credit rating: worth the effort to achieve, but
only if you take advantage of it when you really need it. To this end, we can
deploy a form of reverse discounting that penalizes the central bank for lingering
in a high inflation zone for too long. The central bank will have to choose an
entire policy path and deploy dynamic optimization methods.

A loss function that meets these requirements10 is

F = βA(t)(πt − πT )2 − (yt − yneut)

where β is a scale or weighting factor (relative to the output gap), and A(t) is
a factor that penalizes high or low inflation harshly in the more distant future.
Since it operates like a reverse discount factor, we will call this the accrual
factor.11

An inflation gap that persists in the policy plan raises the likelihood that ex-
pectations will become de-anchored through behavioral and institutional changes,
imposing greater subjective losses on the central bank. Since these losses accrue
with the progression of time in the plan starting at t = 1, we assign the following
properties to the function that governs the accrual factor:

A = A(t) A′ > 0 A′′ > 0.

A functional form12 that meets these requirements and is familiar to economists
is exponential growth or its discrete-time counterpart,

A = (1 + b)t b > 0 t = 1, 2, . . . .

In implementing this loss function in a three-equation setting, we will find
that the intrinsic weight assigned to the inflation gap (β) regulates the initial
response of output in the policy plan while the accrual factor (1 + b) regulates
the speed and shapes the character of the response over the planning interval.

9One example is that in the presence of path dependence, anchoring allows the central
bank some space to pursue an output target so that it can repair the damages inflicted by
temporary negative shocks (Michl and Oliver, 2019).

10These requirements are also met by any loss function of the following form:

Ft = βA(t)(πt − πT )2 − f(yt)

where f ′(yt) > 0. We have chosen the linear form because it is simple and permits an explicit
solution.

11Most intertemporal models of optimal monetary policy, such as the Fed’s optimal control
approach (Brayton et al., 2014) use a true discount factor that shrinks down future inflation
and output gaps (present discounting). It is not entirely clear what justifies that treatment
since it effectively rewards the bank for postponing gap closure.

12There is no inherent reason why the accrual factor should take a functional form so similar
to an interest or profit rate. Foley et al. (2019) uses a functional form that restricts the sum
of discount factors to be one.

5



Unlike the accrual factor, the intrinsic weight on the inflation gap does not
have an unambiguous interpretation. It cannot be a measure of the cost of
inflation since it applies equally to inflation rates low and high. And even if
positive gaps are capturing these costs to some extent, it has to be said that
the usual suspects, shoeleather costs and tax distortions, look minimal. For
negative gaps, the threat afforded by the effective lower bound at least seems
substantial.

It also makes some sense to impose a conditional output floor based on
the Hippocratic principle “do no harm.” A socially responsible central bank
would not want to deliberately create any unnecessary unemployment since with
anchored expectations the inflation rate will decline at the equilibrium level of
output (and even above it). This self-stabilizing property of expectations is,
after all, one of the main social benefits of anchoring. The constraint

yt ≥ ylow

formalizes the Hippocratic principle. In the most rigid interpretation, the floor
might be set at the inflation-neutral level of output. This floor is conditional
because there will be circumstances when it is untenable or undesirable. In ef-
fect, this constraint arises from recognition of the inherently asymmetric nature
of the social costs and benefits of the output (employment) gap.13

Finally, it is necessary to consider restrictions that prevent opportunistic
reflations of the sort that motivated the old Barro-Gordon (1983a) model of
time-inconsistent inflation. We can see immediately that the central bank will
be tempted to create a temporary boom even without any shocks in the initial
period, t = 0. The loss function is minimized at a level of output greater than
the inflation-neutral level.14 The Odyssean solution is to simply prohibit any
such opportunistic behavior by imposing a restriction like

yt ≤ yhigh.

We will call this the Odyssean constraint.15 Again, the ceiling might literally
be set at the current level of output in the appropriate context. The presence
of anchoring in effect implies that the central bank already has some credibility
in this regard. As Alan Blinder (1998) observed after his stint on the Federal
Open Market Committee, central bankers in practice avoid the temptation to
inflate by obeying a self-imposed rule of thumb: “just don’t do it.”

Even more than the Hippocratic constraint, this restriction is clearly context-
dependent since reflation will likely require an injection of demand. Indeed, the
inflation bias built into the loss function might be regarded as a positive feature

13It is more or less equivalent to treating the relative weight on the inflation gap as zero
for employment and output levels below the inflation-neutral values. There may be some
advantage to considering functional forms that exhibit this asymmetry in a more organic
fashion.

14To be precise, y1 = yneut + 1/(2βα2) minimizes the loss function in period 1.
15Odysseus (Ulysses in Latin) was the protagonist in the Odyssey who, on the advice of the

Greek god Circe, had himself lashed to the mast of his ship to avoid being lured to his death
by the songs of the Sirens.
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rather than a bug since it complements the required response to a negative
demand shock and creates positive social benefits as well.16

It is worth stepping back to remark on a basic asymmetry in our model. The
inflation process is grounded in institutional structures that give it an inertial
quality because of the adaptive properties of the reference rate of inflation as
modified by anchoring. The central bank, on the other hand, is forward looking
and operates as if it had perfect foresight, taking the structural features of the
inflation process for granted. This asymmetry shares some characteristics with
the celebrated Dornbusch (1976) model of exchange rate overshooting which
depends on the interaction of inertial product markets with forward-looking
central banks and asset markets.

3 Solving the program

The bank’s problem is to choose {yt}t=∞
t=1 so as to minimise

t=∞∑
t=1

[β(1 + b)t(πt − πT )2 − (yt − yneut)]

subject to equation (1) and the following conditions

yt ∈ [ylow, yhigh]

lim
t→∞

πt = πT

with π0, β, b, π
T , ylow, yhigh, yneut, χ, and α given.

It is assumed that

ylow ≤ yneut ≤ yhigh (2)

ylow ≤ yneut +
χ[1− (1− χ)(1 + b)]

2α2β(1 + b)
≤ yhigh. (3)

The Lagrangian for this problem is :

L =

t=∞∑
t=1

−[β(1 + b)t(πt − πT )2 − yt]

+ λt+1((πt+1 − πT )− (1− χ)(πt − πT )− α(yt+1 − yneut))

+ ut(yhigh − yt) + vt(yt − ylow).

The first order conditions for an optimum are as follows.

16More broadly, one of the problems identified (Michl, 2018) with the standard loss function
is that in the presence of hysteresis its disinflationary bias will lead unfavorable demand or
inflation shocks to have permanent negative output effects.
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∂L

∂yt
= 1− ut + vt − λtα = 0

ut ≥ 0, (yhigh − yt) ≥ 0, ut(yhigh − yt) = 0

vt ≥ 0, (yt − ylow) ≥ 0, vt(yt − ylow) = 0

∂L

∂πt
= −2β(1 + b)t(πt − πT ) + λt − (1− χ)λt+1 = 0 (4)

lim
t→∞

πt = πT .

Since limt→∞ πt = πT there is no condition on limt→∞ λt. Since the mini-
mand is convex in πt and yt, and the constraints are linear, any solution that
satisfies the above first order conditions is optimal.

The shadow prices ut and vt are the subjective penalties the bank pays for
abiding by the Odyssean and Hippocratic constraints. Thus, if ut > 0 the
bank would prefer a value of yt greater than yhigh but this is ruled out by the
Odyssean constraint. The shadow price ut is the price the bank would be willng
to pay for relaxing this constraint by one unit. An analogous intepretation
applies to vt.

3.1 Singular path

Suppose that the limits on yt are so wide that they impose no effective constraint
on this variable. The resulting solution must be interior and hence for t ≥ 1:

λt =
1

α
.

From (4) it follows that πt = π∗
t where

(π∗
t − πT ) =

χ

2αβ(1 + b)t
. (5)

Suppose also that

π0 − πT =
χ

2αβ
.

Equation (1) can be written as follows

α(yt+1 − yneut) = (πt+1 − πT )− (1− χ)(πt − πT ). (6)

For t > 1 equations (5) and (6) imply that yt = y∗t where

y∗t − yneut =
χ[1− (1− χ)(1 + b)]

2α2β(1 + b)t
. (7)

The quantities π∗
t − πT and y∗t − yneut decline geometrically towards zero. We

shall refer to the trajectory of π∗
t as the singular path. Note that inflation on
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this path always approaches the central bank’s target from above. Output, on
the other hand, will lie above or below the inflation-neutral level depending on
the sign of 1− (1−χ)(1+ b). This expression is positive if b < χ

1−χ . Conditions

(2) and (3) ensure that all points on the singular path lie within the permitted
range.

3.2 First steps

If the constraints on output permit, the following value of y1 will be optimal
and in one step will take the inflation rate πt onto the singular path:

y∗∗1 − yneut =
χ

2α2β(1 + b)
− (1− χ)

α

(
π0 − πT

)
.

It may be that y∗∗1 lies outside of the permitted range [ylow, yhigh]. The
solution in this case is to move as rapidly to the singular path as the constraints
allow. Suppose that π0 is so large and positive that y∗∗1 < ylow. It is then
optimal to set yt = ylow until the singular path comes into range. Conversely, if
π0 is so large and negative that y∗1 > yhigh, it is optimal to set yt = yhigh until
the singular path comes into range. Thus, subject to conditions (2) and (3), the
general solution to the optimisation problem is to reach the singular path as
rapidly as the constraints allow and then to remain permanently on this path.

The final term on the right-hand side of the above equation indicates the
instantaneous sacrifice needed to close the entire inflation gap all at once. This
enables us to interpret the actual choice of output as a response to the inflation
gap modified by the shadow prices enforcing discipline on the central bank. The
shadow prices and the accrual factor are effectively distributing the cumulative
output gap over multiple periods. We can also characterize the optimal policy
plan qualitatively using this interpretation. The farther out from the initial
shock at t = 0 we plan, the more discipline is imposed by the accrual factor,
and the closer the optimal plan will be to closing the inflation gap fully by
choosing a suitable output gap.

The rest of the paper considers the central bank problem in the context of
each of the circumstances represented by the four quadrants of Figure 1, paying
close attention to the political economy of the constraints and the parameters
of the loss function. There is no presumption that these parameters would be or
should be the same in every scenario. Some of the numerical examples have been
generated with an eye more toward showcasing the properties of the model than
out of a sense of realism and it is hoped they will be evaluated in that spirit.
Although the initial output y0 does not affect the optimum policy, we include
some mention of this variable to provide a context for our analysis.

4 Disinflation

We begin in quadrants I or II with inflation elevated either because of a pure
temporary inflation shock (an exogenous supply shock), a pure demand shock,

9



or some combination. What matters most to the central bank is the initial
inflation rate since that establishes the expected rate that fixes the position of
the Phillips curve that constrains its choices in the first year of the policy plan.

4.1 No anchoring (χ = 0)

The case with no anchoring and a large inflation shock π0 > πT presents the
bank with some unpleasant arithmetic, since inflation is not self-stabilising and
to disinflate requires a large sacrifice of output. The temptation for the central
bank is to disregard the Hippocratic constraint and impose a sharp reduction
in output in the first year. With zero anchoring, the effect on output according
to our model is

y∗∗1 − yneut = −
(
π0 − πT

)
α

.

This loss would all occur in the first year. If the bank observes the Hippocratic
constraint, the initial reduction in output will be less but the cumulative loss
of output will be the same; this is the tyranny of the sacrifice ratio in action.
Moreover, high inflation will persist for longer.

With no anchoring and no constraint on its behavior, the central bank prob-
lem has a straightforward two-stage solution:

y1 − yneut = − (π0 − πT )

α
π1 = πT

yt = yneut πt = πT t = 2, 3, . . ..

The full sacrifice of employment takes place in one period, rather than being
distributed across many. This generally does not happen in the standard (Carlin
and Soskice, 2015) static decision problem underpinning the Taylor Rule because
losses do not accumulate in that setting.

Things are just as bleak in the case of a pure demand shock or a mixed shock
that puts the system in quadrant I or II in Figure 1. In either case, the solution
has the same two-stage configuration. We could certainly explore the details of
life in quadrants I and II but since the focus of the paper is the general case with
anchoring we will move on. Purely inertial inflation is an historical vestige of
the 1970s and 80s, but the last decades have seen dramatic changes in inflation
behavior that includes stronger anchoring and our theorizing should take this
into account.17

4.2 Anchored system (0 < χ < 1)

In the presence of anchoring, the central bank problem undergoes a profound
transformation because it is freed from the tyranny of the sacrifice ratio by the

17Ball and Mazumder (2011) estimate that the value of χ went from virtually zero before
the 1990s to a range of 0.3 to 0.6 by 2010.
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self-stabilizing nature of the inflation process.18 In the case of weak anchoring,
the singular path approaches πT and yt = yneut for large t. A central bank that
chooses to use economic slack to speed up a disinflation will impose a loss of
employment by design. The ratio of cumulative loss to the size of the disinflation
is known as the sacrifice ratio. For a central bank that is unconstrained or
ignores the constraints, the shortfall and sacrifice ratio are

cumulative loss =

t=∞∑
t=1

(yneut − yt)

=
(1− χ)

(
π0 − πT

)
α

− χ2

2α2βb

sacrifice ratio =

∑t=∞
t=1 (yneut − yt)

(π0 − πT )

=
(1− χ)

α
− χ2

2α2βb (π0 − πT )
.

If π0 > πT the sacrifice ratio is a decreasing function of χ. The more anchored
are expectations, the lower is the cost of curbing inflation in terms of output
foregone. Indeed, if χ is sufficiently large the sacrifice ratio will be negative.
Tetlow (2022, Table 5) reports ex post ratios from simulations using the FRB/US
model after a change in the inflation target, assuming the central bank follows a
Taylor Rule. As we have argued here, the Taylor Rule has a disinflationary bias
so it should come as no surprise that some sacrifice occurs from its application
even under the most optimistic assumptions about the expectations formation
process.

4.2.1 Pure inflation shock (π0 > πT , y0 = yneut)

In this case the solution is fairly obvious if the self-imposed constraints are
binding. Since the Odyssean constraint prevents any significant expansion of
output above potential, and the Hippocratic constraint limits the scope for using
unemployment to combat inflation, the optimal policy is to keep output at the
minimum or maximum level as appropriate until the singular path is reached.
From then onwards, output and inflation converge geometrically to yneut and
πT .

In the most rigid case, with ylow = yneut and yhigh = y0, a homeopathic
policy of doing nothing19 would be optimal. Of course, simply maintaining

18Formally, the equation of motion for expectations is

∆πt = −χ(πt − πT )

which is dynamically stable.
19Or nearly nothing since to keep the output gap closed the central bank would need to

increase nominal interest rates in order to prevent the inflation shock from inadvertently
delivering a stimulus from lower real interest rates.
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output at its sustainable level would risk losing confidence since with a low
coefficient of anchoring it may take considerable time for inflation to return
to target. (At the same time, the steady decline in inflation would probably
bolster confidence.) The intrinsic dynamic of inflation under a homeopathic
policy is represented by a simple first-order difference equation so it is easy to
calculate how long it will take to get within close reach of the target rate.20 For
a moderately high level of anchoring, say χ = 0.7, after a 5% inflation shock it
takes about two and a half years to come within 25 basis points of the target.
For a low level, say χ = 0.3 it takes over eight years, although inflation would
only be one percentage point (100 basis points) above target after four and a
half years.

[Figure 2 here.]

Figure 2 illustrates the impulse-response functions from the response to a
pure inflation shock when there is a low degree of anchoring (χ = 0.2). The
economy is initially coasting along in steady state with y = yneut and π = πT ,
when it is hit by a burst of high inflation. If the bank is unconstrained, given our
choice of parameters it will respond aggressively, raising the interest rate sharply
and provoking a steep fall in output. In our model, this eliminates the bulk of
inflation within one period (a “year”). However, if the bank is constrained by
the Hippocratic principle, it will pursue a less aggressive policy and seek to
bring inflation down over the course of several periods.

Figure 2 illustrates the policy plan with an accrual factor that is larger than
the critical value governing the sign of the output gap which is to say

b >
χ

1− χ
.

This creates what might be described as the canonical policy dilemma. Respect-
ing the self-imposed constraints requires a longer period of disinflation.

[Figure 3 here.]

However, this dilemma is not always salient in our model. Figure 3 illustrates
a policy plan with an accrual factor that is less than its critical value. In this
case, the central bank’s unconstrained response calls for an immediate fall in
output but then follows it up with a soft-landing with output slightly above its
inflation-neutral level. The central bank is torn between conflicting goals but
unlike Buridan’s Ass it chooses to attend to one and then the other.21 The
constrained response then ends up invoking both the floor and ceiling we have
chosen. The ceiling has been set equal to the inflation-neutral level on grounds
that a central bank would face stiff resistance to any stimulative policy after a
sharp inflation shock.

20The general solution for inflation with y = yneut is just πt = πT +(π0−πT )(1−χ)t so the
time it takes to get within m basis points of the target is (logm− log (π0 − πT ))/ log (1− χ).

21The French philosopher Jean Buridan is eponymous for his paradox of a donkey who,
placed equidistant between two piles of hay, starves because it cannot decide which to eat.

12



4.2.2 Demand shock (π0 > πT , y0 > yneut)

In the standard Taylor Rule framework, a positive demand shock is regarded
as an adverse event requiring an immediate deflationary response that puts the
system in quadrant II. In our framework, by contrast, there is no inherent need to
rely on unemployment to solve inflation problems. Even without the Hippocratic
constraint, a demand shock with or without an independent inflation shock
can be resolved by means of a controlled disinflation which remains entirely
in quadrant I. Figure 4 presents two such policy plans with different intrinsic
weights (i.e., β) assigned to the inflation gap in order to illustrate how β affects
the initial response. In both cases, the self-imposed constraints are non-binding.

[Figure 4 here.]

Once again, the shape of the policy plan depends critically on the choice
of parameters. Putting less weight on the inflation gap could have invoked the
Odyssean constraint at the front end of the plan. On the other hand, raising
the penalty for persistent breaches could have eliminated the output gap more
quickly, even taking the policy plan into quadrant II or perhaps hitting the
Hippocratic constraint and relying on the self-adjusting property of inflation to
finish the job of closing the inflation gap.

4.2.3 Stagflation (π0 > πT , y0 < yneut)

A negative demand shock in combination with a positive inflation shock (aka
stagflation) calls for some restraint in restoring demand. How much restraint
depends critically on the degree of inflation inertia, given fixed parameters in the
loss function. The inflationary bias of the loss function potentially contributes
to choosing a policy plan that exits quadrant II quickly. Figure 5 shows two
examples that illustrate the role that the degree of anchoring plays in shaping
the policy plan.

In this figure and the remaining figures we use a phase diagram environment
as a canvas for visualising the policy plans which facilitates our references back
to the four quadrants of Figure 1. A key to interpreting them is that the
point labeled t = 0 represents the initial position, bullets and circles represent
observations, and the lines connecting them represent trajectories that end at
the destination with y = yneut and π = πT .

In the first example, the parameters have been chosen so that the uncon-
strained policy creates a rapid escape from stagnation followed by a controlled
return to potential output. (In this case, there may be some need to impose
an upper limit on the stimulus but we have chosen to ignore the self-imposed
constraints here.) In the second, a lower degree of anchoring prevents a rapid
escape and requires a period of slack in order to bring down inflation owing to
the greater degree of inertia. In this case, the policy plan adopts the profile of
a traditional Taylor Rule trajectory.

[Figure 5 here.]
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These policy plans highlight the difference between the socially responsible
central bank and a bank deploying the standard Taylor Rule framework, which
would have restricted the policy plan to quadrant II no matter what the degree
of inertia unless it put no weight on the inflation gap. It is also interesting that
the socially responsible bank will ignore the Taylor Principle in the low-inertia
example since it will need to lower the real interest rate to achieve a recovery
in demand, implying raising nominal interest rates by less than inflation has
increased.22

5 Reflation

To complete the picture, consider shocks that lower inflation and call for a
controlled reflation. In the event of a negative inflation shock that takes the
system into quadrants III or IV, the same basic principles continue to apply.
Here the standard Taylor Rule framework actually recommends an aggressive
reflation that takes place entirely in quadrant IV. The difference is that our
framework involves entering quadrant I and overshooting the inflation target.

5.1 Disinflationary shock (π0 < πT , y0 = yneut)

A disinflation shock without a rigid output ceiling will call for an immediate
stimulus that enters quadrant I in the first period. Recall that the unconstrained
optimal output level for period 1 is

y∗∗1 − yneut =
χ

2α2β(1 + b)
− (1− χ)

α

(
π0 − πT

)
.

A negative inflation gap requires an initially positive output gap to put the
system onto the singular path. Moreover, if b < χ

1−χ , the output gap remains
positive along the singular path. As we showed earlier, the inflation gap is
always positive on the singular path implying overshooting the inflation target.

[Figure 6 here.]

There may be political obstacles to an ambitious reflation after a negative
demand shock which prevent the system from reaching the singular path right
away. Figure 6 illustrates the phase diagram for a constrained and unconstrained
policy plan. In both cases, the reflation ends up overshooting the inflation
target. In the constrained case, the output guardrail delays the onset of inflation
overshooting but as long as the output ceiling permits a high-pressure labor
market it will eventually occur. Only the extreme case of an output ceiling set
at the inflation-neutral level of output prevents inflation overshooting in our
model.

22The Taylor Principle is the general idea that the central bank needs to raise nominal rates
by more than inflation has increased in order to deliver a disinflationary or contractionary
response.
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5.2 A mixed shock (π0 < πT , y0 > yneut)

To round out the discussion, consider an initial position that combines a negative
inflation shock with a positive demand shock–the obverse of stagflation. It is
difficult to think of historical examples of this felicitous state of affairs but we
can use it to dramatize one of the properties of the model.

[Figure 7 here.]

Figure 7 illustrates a reflation with examples that have been parameterized
to bring both self-imposed constraints into action. The Odyssean constraint can
be motivated by resistance to additional stimulus since demand is already strong
enough to speed the needed reflation. Here the output ceiling has been set at the
initial (elevated) level of demand. In this example, the central bank maintains
a high accrual factor that exceeds the critical value governing the sign of the
output gap in periods beyond the first period (i.e., for t > 1). As a result the
Hippocratic constraint remains relevant because of the Buridan’s Ass problem
we saw earlier and we have set the output floor at the inflation-neutral level. The
central bank mechanically following its optimal program without constraints has
been led to overindulge in stimulus and wind up paying for it by a period of
unemployment later in the plan. In this case, both constraints will be activated.
Figure 7 illustrates an example that exhibits (to use optimal control jargon) a
bang-bang solution that alternates between the two self-imposed constraints.

6 Concluding comments

This paper challenges the standard approach to monetary policy that relies on a
quadratic loss function on three grounds. First, it treats a high employment rate
(i.e., above the inflation-neutral rate) as a social cost. The socially responsible
central bank setting policy in this paper minimizes a loss function that recognizes
high employment as a social benefit (and low employment as a cost). Second,
the socially responsible bank observes an economic Hippocratic oath to do no
harm by creating unnecessary unemployment.

Finally, the loss function in this paper recognizes that the costs of an inflation
gap are time dependent. Inflation gaps after an initial shock are likely to erode
confidence in the central bank’s ability to achieve its inflation target the longer
they persist and reduce the degree to which inflation expectations are anchored
to the target. Because anchoring is a major social resource due to the flexibility
it affords the monetary authority to stabilize inflation without imposing costs on
workers, a socially responsible central bank will need to fashion any policy plan
responding to a shock with its own credibility in mind. This is also a reason why
incomes policies that reduce inflation inertia complement interest-rate policy.

With the global inflation shock generated by recovery from the Covid epi-
demic as a backdrop, we emphasize that the main difference in the policy plans
between the current paper and the standard Taylor Rule approach is that the
latter almost always involves the use of excess unemployment as a disinflationary
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measure. A socially responsible central bank would only do that under extreme
circumstances such as the absence of anchoring. It will generally try to take
full advantage of the flexibility afforded by anchoring to operate the economy
at or above its inflation-neutral employment rate, allowing inflation to stabilize
through its own homeostatic tendencies. As of the date of writing, the U.S.
experience seems to confirm the feasibility of this recommendation, although
it remains possible that the Fed, following Taylor Rule protocol, has tightened
sufficiently to induce a recession.

While the emphasis here is on managing disinflation, this basic difference
also characterizes the optimal policy response to a negative inflation shock that
requires reflation where the socially responsible bank will be willing to overshoot
its inflation target.

Even though the central bank’s decision problem is modeled using a precise
mathematical technique (the Lagrangian method), it is clear from the examples
and the discussion that central banking is as much an art as a science. In many
cases, the central bank needs to make context-specific judgment calls about what
constraints to impose on itself (including restraining its own inflationary biases),
how to evaluate the cost of an inflation gap relative to an output gap, and how
much to worry about the loss of credibility associated with persistence of the
inflation gap. While it is often valuable to model behavior using optimization
techniques, as in the present article, there is still a choice as to what is taken as
given and what is endogenous. The framework offered here provides a disciplined
environment in which to consider these issues. It is doubtful that monetary
policy should be conducted with a simple interest rate reaction function like the
Taylor Rule.
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Figure 1: Policy zones defined by output and inflation gaps. The standard
Taylor Rule restricts the policy plan to quadrants II and IV. The alternative
loss function recommends policies that make use of quadrant I, and discourages
use of quadrant II.
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Figure 2: Impulse-response functions for a pure inflation shock (+6) with
(dashed line) and without (solid line) self-imposed constraints. A high accrual
factor creates a difficult decision for the central bank since its constrained choice
risks losing credibility. The parameters are yneut = 100, ylow = 99, yhigh = 100,
πT = 2, χ = 0.2, α = 0.5, β = 0.5, b = 0.5.
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Figure 3: Impulse-response functions for a pure inflation shock (+6) with
(dashed line) and without (solid line) self-imposed constraints. A low accrual
factor brings both constraints into effect. The parameters are yneut = 100,
ylow = 99, yhigh = 100, πT = 2, χ = 0.2, α = 0.5, β = 0.5, b = 0.1.
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Figure 4: Impulse-response functions for a demand shock (+5) with β = 0.1
(solid line) and β = 0.2 (dashed line). Both plans stay within quadrant I (defined
with respect to output and inflation gaps). The parameters are yneut = 100,
πT = 2, α = 0.5, χ = 0.5, b = 0.5.
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Figure 5: Phase diagram for stagflation from a demand shock (-2) and an in-
flation shock (+2) with χ = 0.2 (dashed line, circles) and χ = 0.5 (solid line,
bullets). A lower degree of inflation inertia (higher χ) permits the central bank
to recover from the shock through quadrant I. The parameters are yneut = 100,
πT = 2, α = 0.5, b = 0.5, β = 0.5.
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Figure 6: Phase diagram for reflation after a negative (-2) inflation shock with
(dashed line, circles) and without (solid line, bullets) a self-imposed output
ceiling. The parameters are yneut = 100, ylow = 100, yhigh = 101 πT = 2,
α = 0.5, χ = 0.5, β = 0.5, b = 0.5.
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Figure 7: Phase diagram for reflation with a positive (+2) demand shock and
negative (-2) inflation shock with (dashed line, circles) and without (solid line,
bullets) constraints. The constraints produce a bang-bang solution. The pa-
rameters are yneut = 100, ylow = 100, yhigh = 102 πT = 2, α = 0.5, χ = 0.5,
β = 0.1, b = 4.
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