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Abstract 
In addition to global climate benefits, carbon mitigation improves local air quality by reducing 

emissions of hazardous co-pollutants. Using data on large industrial point sources in Europe, we 

estimate how changes in carbon dioxide emissions affect emissions of the three co-pollutants 

SOX, NOX, and PM10 for samples of 727 to 2,653 facilities for the years 2007 to 2015. We find 

substantial and significant co-pollutant elasticities of 0.7 for SOX and NOX, and 0.5 for PM10, 

which are robust to different estimation approaches. Large CO2 emitters and the energy sector 

are characterized by higher-than-average co-pollutant elasticities. For climate policy induced 

CO2 emission reductions we find co-pollutant elasticities in the energy sector of 1.2 for SOX, 

1.0 for NOX, and 0.8 for PM10. Using these estimates to calculate monetary air quality co-

benefits suggests that conventional European Environmental Agency estimates of carbon 

damages that omit co-benefits significantly underestimate the benefits of carbon mitigation. 
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1. Introduction 

Carbon combustion simultaneously releases carbon dioxide (CO2) and air pollutants such as 

sulfur oxides (SOX), nitrogen oxides (NOX), and particulate matter (PM). More stringent climate 

policies therefore also generate air quality and public health co-benefits. Omitting these co-

benefits may lead to substantial underestimation of the economic benefits from carbon 

mitigation. To estimate the full social cost of carbon, or what Shindell (2015) terms the “social 

cost of atmospheric release,” air quality co-benefits need to be incorporated along with climate 

benefits. 

 

A crucial difference between CO2 and co-emitted air pollutants – also termed co-pollutants – is 

that CO2 is a uniformly mixed pollutant: a ton of emissions has the same climate impact 

independent of the location of release, and hence abatement is most efficient wherever its 

marginal costs are lowest, again independent of the location. Co-emitted air pollutants, by 

contrast, are non-uniformly mixed: the environmental and health damages are proximate to the 

location of release, and hence the total health damages depend on the number of people exposed 

(see, e.g., Muller and Mendelsohn 2007). For pollutants of the latter type, spatially 

differentiated policies have been recommended that take into account variations in damages, 

and hence abatement benefits, as well as in abatement costs (Tietenberg 1995; Muller and 

Mendelsohn 2009; Muller 2012; Boyce and Pastor 2013).  

 

Air quality co-benefits of carbon mitigation policies in the form of positive public health 

externalities are important for two reasons. First, they can be sufficiently large that carbon 

mitigation policies are “in countries’ own interests,” helping to surmount collective action 

problems at the international level (Parry et al. 2015). If national compliance with international 

climate agreements were driven primarily by non-climate benefits of mitigation, and therefore 

would be undertaken even without the climate rationale, the additionality of international 

agreements may be limited (Zhang and Wang 2011). Second, variations across polluters in the 

extent of co-benefits per ton of carbon abatement imply that “one-size-fits-all” carbon 

mitigation policies may not be optimal (Muller 2012; Parry et al. 2015). 

 



	 2	

Despite the importance of air quality co-benefits from economic, public health, and 

environmental perspectives, there has been little empirical research on the relationship between 

CO2 emissions and co-pollutants at the level of individual pollution sources. Most previous 

analyses are either simulation studies relying on ad hoc parameters to calculate the impact of 

carbon mitigation on co-pollutant emissions and their regional distribution, or are based on 

aggregate data that can return misleading results if the two types of pollutants are partially an 

outcome of different economic activities (i.e. caused by different sources). 

 

Exceptions are Muller (2012) and Boyce and Pastor (2013), who calculate ratios of co-pollutant 

emissions and CO2 at the level of pollution sources. These intensity ratios, however, implicitly 

assume a unit elasticity between carbon release and co-pollutant emissions rather than 

empirically estimating this relationship. The fact that CO2 and co-pollutants are emitted by the 

same sources does not necessarily imply a unit elasticity relationship at the margin, whereby a 

one percent change in CO2 emissions is accompanied by a one percent change in the same 

direction in co-pollutant emissions.  

 

Variations in emissions of both greenhouse gases and air pollutants can be explained by scale 

effects (changes in economic output and thereby emissions), composition effects (changes in the 

sectoral composition of the economy), and technology effects that lead to a substitution across 

inputs, new emissions control technologies, or energy savings (Grossman and Krueger 1991; 

Copeland and Taylor 2004; Bollen and Brink 2014). While scale effects and composition effects 

do not affect the point source-level relationship between greenhouse gases and co-pollutants, 

technology effects can alter this relationship substantially (Holland 2010; Brunel and Johnson 

2019). For example, end-of-pipe controls such as scrubbers can strongly reduce co-pollutants, 

while at the same time these devices need electricity to operate and therefore increase CO2 

emissions. An increase in the combustion temperature in natural gas-fired power plants reduces 

CO2 but increases NOX emissions. Co-pollutant and CO2 emissions can also be complements; 

e.g. fuel switching from coal to natural gas reduces both CO2 emissions as well as SO2, since 

natural gas has lower sulfur content than coal. For these reasons, the relationship between CO2 

and co-pollutants is likely to vary strongly across facilities and an empirical estimate of its size 

at the source level is warranted. 
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A practical impediment to such an analysis has been the fact that in many countries, CO2 and 

co-pollutant emissions are reported in separate databases that cover overlapping but different 

sets of facilities, lacking common codes for facility identification. This separation reflects the 

fact that regulatory policies for CO2 and conventional pollutants often were formulated 

independently of each other. In this study, we take advantage of a novel European dataset, the 

European Pollutant Release and Transfer Register (E-PRTR), which provides annual facility-

level data on CO2 as well as co-pollutants starting in the year 2007. These data allow us to 

estimate the elasticities of co-pollutant emissions with respect to CO2 emissions.  

 

An analysis of European industrial facilities is of particular interest against the background of 

the implementation of the world’s first international emissions trading scheme for carbon (EU 

ETS) in 2005, which sets an overall cap for carbon emissions in the participating European 

countries (28 EU countries plus Iceland, Liechtenstein and Norway), but allows carbon trading 

across countries and sectors. At the same time, the European Union is continuously attempting 

to improve local air quality through taxes and total emissions caps on co-pollutants. Climate 

policy and air quality goals, however, are debated and formulated largely independently of each 

other. Spatial and sectoral heterogeneity in air quality co-benefits would therefore imply that 

spatially differentiated policies could provide strong efficiency as well as equity improvements. 

 

To the best of our knowledge, this study is the first to estimate co-pollutant elasticities from 

panel data at the point-source level, which is needed not only for a precise assessment of the 

overall magnitude of air quality co-benefits of climate mitigation, but also for the efficient 

design of differentiated policies. We provide estimates of co-pollutant elasticities, based on all 

CO2 variations in the data, and based on climate policy-induced variations. 

 

We find evidence of substantial and statistically significant co-pollutant elasticities of around 

0.7 for sulfur oxides (SOX) and nitrogen oxides (NOX), and 0.5 for particulate matter (PM10) 

when we use all CO2 variations in the sample. These results are robust to a variety of alternative 

specifications and estimation approaches. We find considerable variation in the magnitude of 

co-pollutant elasticities across CO2 polluter size and economic sectors, and little variation over 
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time, and by regional population density. Large CO2 polluters and the energy sector are 

characterized by relatively high co-pollutant elasticities. Using changes in regulatory stringency 

to identify climate policy-induced changes in CO2 emissions, we estimate co-pollutant 

elasticities in the electricity sector of 1.2 for SOX, 1.0 for NOX, and 0.8 for PM10. Using these 

estimates to calculate monetary co-benefits suggests that conventional European Environmental 

Agency estimates that omit air quality co-benefits significantly underestimate the benefits of 

carbon mitigation.  

 

The remainder of the paper is organized as follows. Section 2 reviews the literature on co-

pollutants of carbon emissions and air quality co-benefits of carbon mitigation. Section 3 

describes the data. Section 4 presents our identification strategy. Section 5 reports the results of 

our analysis. Section 6 monetizes the co-pollutant damage estimates and compares them to 

European damage cost estimates for CO2 that are based on climate damages alone. Section 7 

concludes. 

2. Existing literature on co-pollutants and air quality co-benefits 

Policy-induced variations in pollutants can generate spillovers on other pollutants. These 

spillovers can be positive if the two types of pollutants are complements, i.e. a reduction in one 

pollutant is associated with a reduction in the other, or negative if they are substitutes, i.e. if a 

decline in one pollutant leads to an increase in the other, generating a trade-off between two 

different environmental goals (Holland 2010). Two types of pollutants frequently studied 

together are greenhouse gases and local air pollutants. Both are released through the combustion 

of fossil fuels but are regulated separately using different environmental policy instruments 

(Brunel and Johnson 2019). The literature on air quality co-benefits of climate policy, on the 

one hand, consists largely of simulation studies that suggest large positive spillovers from 

climate policy on air quality and public health. On the other hand, the mostly empirical studies 

on climate benefits of air pollution regulation tend to find no clear evidence of spillovers. In this 

section we briefly review the related literature, and highlight what our study adds to it. 

 

A growing body of literature has indicated that carbon mitigation can yield significant air 

quality co-benefits. The majority of studies on this topic have simulated specific carbon 
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mitigation policy options and compared them to a reference-case scenario. Monetization of 

these co-benefits yields impacts per ton of CO2 that are comparable to widely cited “social cost 

of carbon” (SCC) estimates of climate damages, and sometimes much larger. Many of these 

studies use aggregate data, and assume a unit-elasticity relationship between CO2 and co-

pollutants. Here we review several recent studies that illustrate representative findings.4 

 

Shindell et al. (2016) find that a policy mix designed to reduce US carbon emissions by 2.7% 

per year would avert 36,000 (11,000 to 96,000; 95% CI) annual premature deaths from air 

pollution in the period 2016 to 2030. Monetizing the averted mortality by means of the US 

EPA’s value of a statistical life (VSL, updated to 2010), the authors conclude that the total 

social cost of atmospheric release, combining co-benefits plus climate damages valued at the 

SCC, both at mid-range (3%) discounting, is three to four times greater than the SCC alone. The 

authors note that inclusion of other air quality benefits, such as impacts on medical spending 

and worker productivity, would further increase this ratio. 

 

Parry et al. (2015) analyze a number of co-benefits of carbon mitigation, including not only air 

quality improvements but also other impacts, such as reduced traffic accidents and reduced 

fossil fuel subsidies, at the country level for the world’s 20 largest CO2 emitters in the year 

2010. Air quality improvements from reduced coal combustion generate the largest co-benefits. 

They express their results as “second-best domestic CO2 prices”: second-best in that “no 

country presently has anything like fully corrective charges” for these externalities; and 

domestic in that the prices exclude global climate benefits. The average price for all 20 

countries is $57.5/tCO2. For the six EU member countries included in the study, the price ranges 

from $15 in Italy to $90 in Poland; in Germany, France, the UK, and Spain it is $45-55. 

 

In an analysis of air quality co-benefits of carbon mitigation in the US, Thompson et al. (2014) 

model three policy scenarios – one targeting the electricity sector, one targeting transportation, 

and an economy-wide cap-and-trade program – and compare their costs with the mortality 

reductions the policies would induce. They find that monetized human health benefits would 

																																																								
4 For reviews of earlier literature see Bell et al. (2008), Pittel and Rübbelke (2008), Nemet et al. (2010), and West 
et al. (2013). 
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offset 26% to 1,050% of the cost of carbon mitigation, with the highest net benefits accruing in 

the cap-and-trade scenario due to abatement cost minimization. They conclude that carbon 

mitigation policies initially “can be motivated based on air pollution co-benefits” (p. 921), but 

caution that as policy stringency increases, marginal abatement costs may rise to the point that 

they no longer are fully offset by co-benefits. 

 

In a global simulation that takes into account trans-boundary movement of co-pollutants and 

interactions between climate change and air quality, West et al. (2013) calculate the averted 

mortality that would result from applying an international carbon price aimed to limit 

temperature increase in the year 2100 to 2.5°C. Using high and low VSLs and alternative 

concentration-response functions, they find worldwide average air quality and health co-benefits 

of $50-380/tCO2. Comparing these to carbon mitigation costs, they find that the co-benefits 

alone would exceed marginal abatement costs in 2030 and 2050. 

 

Simulation studies also have assessed the air quality co-benefits of carbon mitigation policies 

specifically in electric power generation. In an early contribution, Burtraw et al. (2003) 

analyzed the impact of a $25/t carbon tax on power plant emissions in the United States, and 

concluded that NOX-related health benefits in the United States would be $8/t of carbon 

reduced. Additional savings of $4-7/t would accrue from reduced costs of compliance with 

existing SO2 and NOX emission caps. The authors concluded that these ancillary benefits alone 

would justify the average $12/t cost of carbon reductions in response to a $25/t tax. 

 

Analyzing the Obama administration’s Clean Power Plan, that aimed to reduce CO2 emissions 

from electric power plants in 2030 by 32% against the 2005 level, Driscoll et al. (2015) 

concluded that air quality improvements would prevent an estimated 3,500 (780-6,100; 95% CI) 

annual premature deaths by 2020. A follow-up study by Buonocore et al. (2016) that monetized 

the health co-benefits concluded that the plan would yield gross co-benefits of $29 billion in 

2020 ($2.3-68 billion; 95% CI, in 2010 dollars) and net co-benefits of $12 billion (–$15 to $51 

billion, 95% CI). 
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While the above studies assess the magnitude of air quality co-benefits at the country or sectoral 

level, Groosman et. al (2011) investigate variations in air quality co-benefits across US states 

simulating the long-term impacts of a representative climate policy for the transport and electric 

power sector for the years 2010-2030. They find substantial variations in co-benefits across 

states. The largest per capita co-benefits can be found in states east of the Mississippi river, 

which are affected most strongly by the policy-induced reduction in coal-fired electric power 

generation (either directly, or because they are downwind of coal-fired power plants in other 

states). Reduced SO2 emissions from electric power generation account for almost two-thirds of 

the total co-benefits. 

 

Simulation studies like those reviewed above have been widely used to model the relationship 

between carbon mitigation and air quality co-benefits, but there has been relatively little 

empirical research analyzing how CO2 and co-pollutant emissions are related to each other at 

the point-source level. To the best of our knowledge, the only exceptions are Muller (2012) and 

Boyce and Pastor (2013), who use facility-level data to calculate ratios of co-pollutant 

emissions and damages to CO2 emissions in the US. 

 

Muller (2012) computes co-pollutant emissions per ton of CO2 for more than 10,000 sources, 

distinguishing among different facility types in the electric power generation sector and 

different vehicle types in the transport sector. Using a spatially disaggregated model of air 

pollution impacts (Muller and Mendelsohn 2007), he multiplies the ratio of co-pollutant to CO2 

emissions by the marginal damage per ton of co-pollutants to derive the monetary damages per 

ton of CO2. The results indicate that co-benefits from carbon mitigation vary widely across 

source types. In the electricity sector, for example, co-pollutant damages from bituminous coal-

fired power plants are $87/tCO2, whereas for natural gas-fired plants the corresponding figure is 

smaller than $3/tCO2. 

 

Boyce and Pastor (2013) construct a dataset on CO2 and co-pollutant emissions for 1,540 

industrial facilities in the US by merging information from three US Environmental Protection 

Agency databases: the National Emissions Inventory 2008, the Toxics Release Inventory 2007, 

and the Greenhouse Gas Reporting Program 2010. Comparing the ratios of co-pollutant 
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emissions to CO2 emissions across and within industrial sectors, and comparing results with and 

without population-weighted conversion of emissions into health damages, they find 

considerable variation. Comparing petroleum refineries to electric power plants, for example, 

although emissions of co-pollutants per ton of CO2 are higher for power plants, population-

weighted damages per ton of CO2 are 3-10 times higher for refineries because they generally are 

located in more densely populated areas. 

 

The abovementioned studies have analyzed air quality co-benefits of climate mitigation, 

whereas few studies have investigated climate benefits of air quality regulations. While the 

former literature is dominated by simulation studies, the latter largely consists of empirical 

examinations. Holland (2010) analyzes spillovers from increased regulatory stringency of NOx 

emissions on NOx, SOx, and CO2, emissions, as well as output in the electric power generation 

sector in California, using emissions data from the continuous emissions monitoring system for 

power plants. He finds negative effects of increased regulatory stringency on all pollutants and 

output, identified by the county-level change in attainment status under the Clean Air Act. The 

effects for CO2 and SOx emissions become statistically insignificant when controlling for 

output. Splitting the sample into newer and older plants, he finds that the results are driven by 

older plants. He concludes that positive spillovers from increased NOx regulation exist, but that 

these are primarily due to reductions in output at older power plants. 

 

Brunel and Johnson (2019) analyze if increased regulatory stringency, also identified by the 

county-level change in attainment status under the Clean Air Act, in the non-energy sector 

affects CO2 emissions using emissions data from the National Emissions Inventory for local air 

pollutants and from the Greenhouse Gas Reporting Program for CO2 and other greenhouse 

gases. They match non-attainment counties (the treatment group) with attainment counties that 

are similar in all variables except attainment status (the control group) using propensity scores. 

They find that counties with stricter air-pollution regulation do not have lower greenhouse gas 

emissions. Controlling for output and industrial composition, they can rule out that their 

findings are explained by a decline in production. 
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In conclusion, while co-benefits from climate policies are modeled and simulated in several 

articles, little empirical evidence so far exists on the magnitude of co-pollutant elasticities at the 

level of industrial facilities, a crucial input for the assessment of air quality co-benefits. The 

empirical investigations in the US by Muller (2012) and Boyce and Pastor (2013) report co-

pollutant ratios without estimating co-pollutant elasticities.5 There have also been no empirical 

studies on co-pollutant ratios or elasticities in Europe. Further, in contrast to the simulation 

studies of air quality co-benefits, the empirical studies by Holland (2010) and Brunel and 

Johnson (2019) provide no clear evidence of spillovers of increased regulatory stringency of air 

pollution on greenhouse gas reductions. This could potentially suggest that the empirical 

support for air quality co-benefits might be weaker than modeled in simulation studies.6 In these 

respects, the present study aims to fill important gaps in the literature on the relationship 

between local air pollutants and greenhouse gases. 

3. Data  

We obtain data from the European Pollutant Release and Transfer Register (E-PRTR) database, 

a facility-level registry that includes information on CO2 emissions and the major co-emitted 

pollutants, SOX, NOX, and PM10. In contrast to similar registries elsewhere (such as the US 

Toxics Release Inventory), the E-PRTR includes CO2 as well as other pollutant emissions, 

providing a consistent dataset for facility-level analysis. It includes facilities in all European 

Union member states plus Iceland, Liechtenstein, Norway, Serbia, and Switzerland, and is 

available annually from 2007 to 2015. Facilities are required by law to report their emissions to 

the E-PRTR if they exceed capacity thresholds and pollutant thresholds. Firms whose emissions 

are above the threshold for some pollutants but not others only report the pollutants for which 

they exceed the threshold. Hence we have different sample sizes for the three co-pollutants (see 

Online Appendix A1 for summary statistics). 

																																																								
5 To illustrate this point, note that we estimate for a panel ln 𝑐𝑜𝑝𝑜𝑙𝑙!" = 𝛽ln 𝐶𝑂2!" + 𝛼! + 𝜆! + 𝜀!" (see section 
4), where 𝛽 is identified through variations over time at the point source level. Muller (2012) and Boyce and Pastor 
(2013) calculate for a cross-sectional sample co-benefit ratios, i.e. ln 𝑐𝑜𝑝𝑜𝑙𝑙! − ln 𝐶𝑂2! = exp(𝛾!). Thus, the 
implicit “coefficient” of ln 𝐶𝑂2!  is restricted to equal 1. 
6 Alternatively, it could indicate the importance of asymmetric spillover effects of environmental policies. Sigman 
(1996) shows that stricter ambient air quality standards for chlorinated solvents are associated with reductions in 
the overall releases of these toxics and therefore also with a reduction in toxic waste. Taxes on toxic waste 
generation by contrast are associated with an increase in toxic emissions, because rising costs of transferring 
emissions off-site for waste management makes it relatively cheaper to emit them into the air locally. 
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Table 1 shows the reporting thresholds for each pollutant and the share of aggregate emissions 

in the EU that is generated by the large industrial facilities included in the E-PRTR dataset. 

Firms reporting to E-PRTR release 42% of total European CO2 emissions (including emissions 

from mobile sources), making them a highly relevant target for climate policies. They also 

account for 57% of total SOX emissions, 24% of NOX, and 6% of PM10. Their relatively low 

share in PM10 emissions is partly due to releases from other sources, but may also reflect an 

excessively high reporting threshold (Amec Foster Wheeler Environment & Infrastructure 

2015).  

 

Table 1: Data coverage 

 
CO2 SOx NOx PM10 

Reporting threshold 0.1 0.00015 0.00010 0.00005 
Number of E-PRTR facilities in 2012 2277 856 1835 379 
Average E-PRTR facilities emissions 2012  0.79811 0.00266 0.00113 0.00029 
Total E-PRTR emissions 2012 1817.143 2.274 2.076 0.109 
Aggregate total emissions 2012  4300.398 4.007 8.653 1.885 
% Coverage of all emissions 42.3 56.8 24.0 5.8 

Note: All variables, except the number of facilities, are reported in million tons. For CO2, all facilities above 
the CO2 reporting threshold were included; for co-pollutants, all facilities above both the CO2 and the 
respective co-pollutant reporting threshold are included. 
Sources: EEA 2014a, European Union 2006, E-PRTR; authors’ calculations. 
 

Table 2 presents co-pollutant intensity ratios, i.e. average ratios of co-pollutant to CO2 

emissions based on the E-PRTR data and compares these to the ratios reported in the US studies 

by Muller (2012) and Boyce and Pastor (2013). The ratios in Europe appear to be similar to 

those in the US. In Appendix Table A2 we report the same ratios disaggregated by NACE 

activities (the statistical classification of economic activities in the European Community). 

Again, similar to Muller (2012) and Boyce and Pastor (2013), we find considerable variation 

across activities. 

 

Turning to the time-series dimension of our data, a trend decline in aggregate emissions can be 

observed from 2007 to 2015 for CO2 and the three co-pollutants, both economy-wide and in the 

subset of facilities in the energy sector (see Appendix Figures A1 and A2). There was a 

particularly sharp decline in industrial emissions between 2007 and 2009, likely caused in part 

by output declines in the Great Recession, a pattern that is not limited to industrial facilities 
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(EEA 2016). Emissions of co-pollutants declined more rapidly than those of CO2, probably 

reflecting the use of new technologies in combustion (e.g. low NOX burners), improved flue-gas 

abatement technologies, EU directives on the sulfur content of fuels, and other new regulations 

(EEA 2014b, EEA 2014c, EEA 2014d).7 In the energy sector, fuel switching from coal to 

natural gas also contributed to the declines. As a result, co-pollutant intensity ratios – emissions 

of SOX, NOX and particulate matter per ton of CO2 – declined over the period (see Figure A3). 

 

Table 2: Average ratios of co-pollutant emissions to CO2 emissions 
 US data  European data 

 
Boyce and 

Pastor (2013) 
Muller  
(2012) 

(authors’ 
calculations) 

SOX 0.0025 0.0037  0.0027 
NOX 0.0018 0.0014  0.0018 
PM 0.0003 0.0001  0.0003 

Note: Ratios are calculated as averages of individual facility-level 
ratios. For Boyce and Pastor (2013) the results of the average 
across industries (Table 1) were converted to tons. For Muller 
(2012) we report an unweighted average of six different facility 
types in the electric power generation sector. Both studies use SO2 
instead of SOX and PM2.5 instead of PM10, which would be 
preferable but is not available in the E-PRTR. 

 

These co-pollutant intensity ratios provide crucial but insufficient information to integrate air 

quality co-benefits into carbon mitigation policy, since they do not quantify how changes in 

CO2 affect co-pollutants. Co-pollutant elasticities above or below unity are possible, and they 

may vary across pollution sources. 

4. Identification strategies 

To identify the effects of variations in CO2 release on co-pollutants, we first estimate two-way 

fixed effects specifications, and subsequently comprehensively test the robustness of the results 

by including additional fixed effects, specifying different data-generating processes, accounting 

for unobserved factors potentially leading to endogeneity, and conducting an event-study 

analysis to assess the relevance of pre-existing trends. In the second step of our analysis, we 

																																																								
7 The EU National Emission Ceilings Directive (NECD 2001/81/EC) and the Gothenburg protocol set national caps 
of SOX and NOX emissions. The first caps were set for 2010 and largely were met. Additionally, emissions of all 
three co-pollutants by large combustion plants (above 50MWh, including fossil-fuel power stations and other large 
thermal plants such as petroleum refineries) are regulated through caps and technology requirements, mainly for 
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examine heterogeneity in elasticities across economic activities, size of the polluting source, 

regional population densities, and over time, to inform the design of future carbon mitigation 

policies that incorporate co-benefits. In the final step, we limit the variation in CO2 emissions to 

identify co-pollutant elasticities to climate policy-induced changes by applying an instrumental 

variables approach. 

 

We begin by estimating a two-way fixed effects (FE) model, in each case for the maximum 

sample available: 

ln(𝑐𝑜𝑝𝑜𝑙𝑙!") = 𝛽ln(𝐶𝑂2!")+ 𝛼! + 𝛿! + 𝜖!"  (1) 

where copollit is emissions of the co-pollutant, i.e. SOX, NOX, or PM10, at facility i and year t, 

and CO2it is the corresponding carbon dioxide emissions. We purge facility fixed effects (𝛼!) to 

capture unobserved heterogeneity between point sources and common time effects (𝛿!). This 

specification is a generalized form of a difference-in-difference set-up with continuous 

treatment. The variables are expressed in natural logarithms (ln), so the coefficients can be 

interpreted as elasticities, showing the effect of a 1% change in CO2 on the percent change in 

the respective co-pollutant. To account for within-group serial correlation and 

heteroscedasticity, we cluster standard errors at the facility level (Cameron and Miller 2015).8  

 

We then move from this canonical model to more saturated ones. We allow the time effects to 

vary by industry in each country, i.e. estimate specifications with NACE-by-country-by-year 

fixed effects (𝜃!"#). This model allows flexibly controlling for industry specific shocks at the 

country level or effects of national environmental policies on specific industries, and will serve 

as the baseline specification for additional robustness checks. Specifically, we additionally 

include facility-specific time trends as regressors (𝜂!𝑡) to capture heterogeneity between 

facilities. Second, we estimate a version of this model with facility fixed effects purged through 

first differencing, to guard against potential bias due to unit roots, which can be substantial, 

especially in small panels. Third, we assess the relevance of additional unobserved confounders. 

																																																																																																																																																																																	
newly built plants. Special regulations for large combustion plants have been revised and strengthened multiple 
times since they were introduced in the 1980s (EEA 2017). 
8 To reduce the influence of outliers in our analysis that could be a result of reporting errors, we censor CO2 and the 
co-pollutants at the respective 99th percentiles. This, however, has no relevant effect on our results. 
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For example, time-varying environmental preferences of facility owners might be correlated 

with CO2. Specifically, if the error term of our specification is 𝜖𝑖𝑡 =  𝜆𝑖
′𝐹𝑡+ 𝑢𝑖𝑡, where 𝜆𝑖

′𝐹𝑡 are 

unobserved time-varying confounders that are correlated with CO2, and 𝑢𝑖𝑡 is an idiosyncratic 

error term, then the estimates would yield biased results. To account for this possibility, we 

apply the interactive fixed effects (IFE) method of Bai (2009), which uses principal components 

analysis to unravel patterns in the error term causing endogeneity, and decomposes them into 

common factors (𝐹!) and individual factor loadings (𝜆!). The IFE model can be solved by 

iteration when the number of factors is specified.9  

 

To confirm that our estimates are not driven by pre-existing trends, we apply an event-study 

approach (e.g. Dube et al. 2010) and estimate distributed lag versions of the baseline models 

with facility and NACE-by-country-by-year fixed effects, adding two leads and two lags of CO2 

emissions: 

ln(𝑐𝑜𝑝𝑜𝑙𝑙!") =  𝛽!!
!!!! ln(𝐶𝑂2!")+ 𝛼! + 𝜃!"# + 𝜖!"  (2) 

The leading (t+1 and t+2) and lagged effects (t-1 and t-2) can be interpreted as falsification 

tests, since we expect CO2 and co-pollutants to be combusted simultaneously in t=0.  

 

Finally, we identify co-pollutant elasticities for CO2 reductions specifically induced by climate 

policy. Our identification is based on the OECD’s environmental policy stringency index (Botta 

and Koźluk 2014). This index transforms quantitative and qualitative policy instruments for 

several subcategories into measures on a scale of 0 to 6 that are comparable across countries and 

over time. It focuses almost exclusively on the energy sector and is available at the country level 

for the years 1990 to 2012 (to 2015 for a few countries). We use subcategories of this index that 

target CO2 emissions and are typically classified as climate policies to estimate a two-stage least 

squares (2SLS) version of equation 1 for the electricity sector, where CO2 is instrumented by 

these climate policies. Thus, the identifying variation in CO2 is based on exogenous policy 

changes that were implemented for other reasons than the reduction of co-pollutants. To be 

valid instruments, the climate policy indicators must be able to predict CO2. Thus, in the first 

																																																								
9 To determine the number of factors we follow Totty (2015) and use the cross-sectional dependence test suggested 
by Pesaran (2015) on the residuals of a model, and allow for additional factors until the null hypothesis of weak 
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step we establish that an increase in climate policies stringency in the energy sector is able to 

predict CO2 emissions in the energy sector. Since the period under investigation includes the 

Great Recession, and because climate policies might be correlated with policies regulating co-

pollutants, we test if the instrumental variable results are driven by these confounders in 

robustness specifications. Thus, we control for the logarithm of real national GDP, and the 

stringency of the respective co-pollutant policies in the energy sector (also from Botta and 

Koźluk 2014). Since policy-variation occurs at the national level, standard errors are clustered at 

the country-level in all 2SLS specifications. 

5. Results 

5.1 Co-pollutant elasticities for all CO2 variations 

Table 3 presents the results for the three co-pollutants, SOX, NOX, and PM10. In the first 

specification (column 1) with facility and time fixed effects, the panels consist of 727 to 2,653 

point sources, depending on the co-pollutant, for the time period 2007 to 2015, yielding sample 

sizes from 3,574 to 16,493 observations. The estimated elasticities are 0.75 for SOX, 0.74 for 

NOX, and 0.50 for PM10, all highly statistically significant (for summary statistics, see Appendix 

Table A1).10 Reassuringly, the inclusion of NACE-by-country-by-year fixed effects (column 2) 

gives results nearly identical to those of the two-way fixed effects models. The estimates of 

column 2 will serve as baseline results for further robustness checks. 

 

First, we include facility-specific time trends in addition to NACE-by-country-by-time fixed 

effects in column 3. This has very little effect on the estimated elasticities and their significance 

levels compared to the baseline results in column 2. Second, we purge fixed effects trough first 

differencing (column 4), which again yields very similar results as in column 2. 

 

 

																																																																																																																																																																																	
cross-sectional dependence is accepted. 
10 We also estimated the relationship by OLS. For SOX, NOX, and PM10 we obtain a co-pollutant elasticity of 
respectively 0.64 (SE 0.02), 0.74 (SE 0.01), and 0.35 (SE 0.03). These estimates are quite similar to the baseline FE 
results. However, OLS estimates are biased if unobserved heterogeneity between firms is correlated with the 
explaining variables. 



 
 

 
Table 3: Effect of a log-point increase in CO2 on log co-pollutants 

 
Facility and 

time FE  Facility and NACE-by-country-by-time FE 

 

 

Baseline With facility-
specific time 

trends 

Facility FE 
purged by 

1st 
differencing 

Balanced 
sample 

Bai's (2009) 
interactive 

FE 

Facilities in 
all sub-
samples 

Precise 
measure-

ment sample 

 
(1) 

 
(2) (3) (4) (5) (6) (7) (8) 

Panel A: Dependent variable: ln(SOX) 
ln(CO2) 0.752*** 

 
0.727*** 0.699*** 0.679*** 0.697*** 0.713*** 0.740*** 0.770*** 

 
(0.049) 

 
(0.049) (0.063) (0.057) (0.075) (0.135) (0.078) (0.153) 

Observations 7.820 
 

7.820 7.820 6,248 4,320 4,320 2,890 679 
No. of facilities 1.313 

 
1.313 1.313 1.313 540 540 582 238 

R2 0.328 
 

0.572 0.769 0.476 0.565  0.601 0.779 

Panel B: Dependent variable: ln(NOX) 
ln(CO2) 0.743*** 

 
0.730*** 0.736*** 0.715*** 0.720*** 0.690*** 0.813*** 0.833*** 

 
(0.025) 

 
(0.027) (0.030) (0.029) (0.040) (0.075) (0.052) (0.077) 

Observations 16,493 
 

16,493 16,493 13,343 9,088 9,088 2,890 1,905 
No. of facilities 2,653 

 
2,653 2,653 2,653 1,136 1,136 582 560 

R2 0.462 
 

0.617 0.788 0.516 0.625  0.687 0.594 

Panel C: Dependent variable: ln(PM10) 
ln(CO2) 0.499*** 

 
0.501*** 0.497*** 0.482*** 0.581*** 0.530** 0.557*** 1.269*** 

 
(0.056) 

 
(0.068) (0.079) (0.073) (0.117) (0.256) (0.074) (0.126) 

Observations 3,574 
 

3,574 3,574 2,647 1,472 1,472 2,890 224 
No. of facilities 727 

 
727 727 727 184 184 582 74 

R2 0.248   0.567 0.778 0.497 0.604   0.571 0.928 
Notes: All specifications include facility and time or NACE-by-country-by-time fixed effects. Standard errors in parentheses are clustered at the facility-level, 
or bootstrapped in the case of the dynamic auto-regressive models. *** p<0.01, ** p<0.05, * p<0.1 
Source: E-PRTR, authors’ calculations. 
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Third, we drop all facilities that are not in the sample over the whole period (column 5), first 

because this is an interesting robustness exercise by itself, and second because Bai’s (2009) 

interactive fixed effects approach (see column 6) requires sufficiently long time periods and we 

want to assess how the results with factors change compared to the models without factors. This 

halves the sample sizes, but has little effect on the estimated elasticities. We then apply the 

interactive fixed effects estimator on the balanced panel, to investigate the effect of missing 

common factors that can be thought of as omitted variables. Comparing the IFE model with four 

factors (column 6) with the model for the balanced panel (column 5) yields very similar results, 

suggesting that unobserved factors are of little importance.11 

 

Fifth, we limit the sample to observations of facilities that report emissions of all three co-

pollutants (column 7). The results again are similar to those with the full sample. This finding 

becomes relevant when calculating co-benefits from co-pollutant elasticities in section 6. 

 

For some facilities pollutant emissions in the E-PRTR dataset are derived from direct 

monitoring of releases at the facility level, using internationally approved and standardized 

methodologies, and therefore are measured with a high degree of precision. Others are derived 

by applying emissions factors to other measured variables of the facility, such as fuel use or 

output, or by expert estimates for which detailed methodologies are not publicly available. To 

assess the consequences of possible reporting errors, we limit the sample to facilities where CO2 

and the respective co-pollutant are measured directly (column 8). This substantially reduces the 

sample sizes. The estimated co-pollutant elasticities for SOX and NOX are modestly larger than 

for the full sample. For PM10 the elasticity more than doubles, however, this result is based only 

on 220 observations and 74 facilities, and might better be interpreted cautiously.12  

 

																																																								
11 Already the specification with zero factors included allows to accept the null hypothesis of weak cross-sectional 
dependence for all co-pollutant specifications according to the test by Pesaran (2015). Allowing for two, three, or 
four factors has very little effect on the point-estimates. This is reassuring since Moon and Weidner (2015) show 
that the regression parameters of the IFE model tend to stabilize if the correct number of factors is included and 
that it still performs well if more factors are allowed. 
12 While the results for the SOX and NOX samples are robust to different specifications, for PM10 they are not. For 
example, if we include simple year effects instead of NACE-by-country-by-year fixed effects, the estimated 
elasticity drops to 0.41 (SE 0.14). 



	 17	

The results of the event-study (see equation 2) are presented in Figure 1. The figure shows the 

cumulative time path of an increase in CO2 on the co-pollutants for the full samples. We find 

the leading effects to be close to zero, confirming that our estimates are not driven by pre-

existing trends. In the year that CO2 is emitted (t=0), all three co-pollutant elasticities increase 

significantly, while additional impacts from lagged effects are small. The timing suggests a 

causal effect, with the magnitude of the estimated elasticities at t=0 being similar to the 

estimates reported in Table 3. 

 

Figure 1: Cumulative response over time of a log CO2 increase on log co-pollutants 

 
Notes: The figure shows the cumulative sum of the CO2 coefficients form a distributed lag model beginning with the 
2 year lead (see section 4, equation 2). All specifications include facility and NACE-by-country-by-time fixed 
effects. Standard errors are clustered at the facility-level. The dark shaded area represents 90%, the light shaded area 
95% confidence intervals. The sample size is 3,603 observations for SOX, 7,317 for NOX, and 1,675 for PM10. 
Source: E-PRTR, authors’ calculations. 
 

Overall, the results are highly robust to different specifications, estimation approaches, and 

samples. The estimates indicate that a 1% change in CO2 emissions at the facility-level is 

associated with roughly a 0.7% change in the same direction in emissions of SOX and NOX, and 

with a 0.5% change in emissions of PM10. 

5.2 Heterogeneity in co-pollutant elasticities 

We next assess whether and how co-pollutant elasticities vary by the size of polluters, economic 

sectors, population density of the region of location of the facility, and over time. 
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First, we estimate specifications that allow the co-pollutant elasticities to vary by four size 

classes of CO2 emitters – very small, small, large, and very large – each capturing one-fourth of 

the respective sample observations. The results are presented in Figure 2. For all three co-

pollutants, we find the highest co-pollutant elasticities in the very large CO2 emitter quartile. 

This suggests that from the perspective of regulators, focusing on very large CO2 polluters 

might yield the most air quality co-benefit returns. 

 

Figure 2: Effect of a log-point increase in CO2 on log co-pollutants for different CO2 
polluter sizes 

 
Notes: We sort facilities according to CO2 emitted, and then assign each facility to one of the following four 
groups, very small, small, large, or very large CO2 polluter size, such that each group captures one-fourth of the 
respective sample observations. All specifications include facility and NACE-by-county-by-time fixed effects, a 
dummy for very small, small, large, and very large CO2 polluters, and an interaction between these dummies and 
ln(CO2). Standard errors are clustered at the facility-level. The dark shaded area represents 90%, the light shaded 
area 95% confidence intervals. The sample size is 7,820 observations for SOX, 16,493 for NOX, and 3,574 for 
PM10. 
Source: E-PRTR, authors’ calculations. 
 

Next, we estimate elasticities by economic activity. Table 4 presents the results for the NACE 

activities with a sufficiently large number of observations.13 We find substantial variations 

across activities, with relatively high elasticities in electricity production for all samples: 

approximately 0.9 for SOX, 0.8 for NOX, and 0.7 for PM10. The production of electricity is the 

most important activity with respect to total CO2 emissions (see last line of panel), and also has 

very high CO2 emissions by facility for each pollutant. Thus, one reason for the results in Figure 

2 is that energy-producing facilities are among the largest CO2 emitters, and also have relatively 

																																																								
13 We show results for sectors with at least 300 observations. 
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high co-pollutant elasticities. For the NOX sample, also the extraction of crude petroleum and 

manufacture of other organic basic chemicals have above-average elasticities. 

 

To assess heterogeneity over time, we estimate specifications that include interaction terms 

between year-dummies and CO2. The results, graphically presented in Figure 3, show modest 

trend decreases in all three elasticities over the period 2007 to 2015.14 

 

Figure 3: Effect of a log-point increase in CO2 on log co-pollutants over time 

 
Notes: Results from a specification including facility and NACE-by-country-by-time fixed effects, and interaction 
terms between year dummies and ln(CO2). Standard errors are clustered at the facility-level. The dark shaded area 
represents 90%, the light shaded area 95% confidence intervals. The sample size is 7,820 observations for SOX, 
16,493 for NOX, and 3,574 for PM10. 
Source: E-PRTR, authors’ calculations. 
 

If co-pollutant elasticities vary with regional population density, this would have implications 

on the number of people affected by health co-benefits.15 To assess this possibility, we include 

dummy variables for quartiles of NUTS 2 areas ranked by population density, and interaction 

terms between these and CO2. The results are presented in Figure 4. For SOX and NOX we find 

rather little differences across regions. For PM10 a sawtooth pattern emerges, with somewhat 

higher elasticities in regions with very low and high population density compared to regions 

with low and very high population density. 

																																																								
14 In contrast, co-pollutant intensity ratios declined substantially over the period (see Appendix Figure A.3). 
15 Regional population density data at the NUTS 2 (Nomenclature of Territorial Units for Statistics) level were 
obtained for the year 2014 from EUROSTAT’s regional database, as a ratio of total population divided by land 
area. The EU is divided into 276 NUTS 2 regions; in all three co-pollutant samples, a large majority of regions has 
at least one E-PRTR facility. 
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Table 4: Effect of a log-point increase in CO2 on log co-pollutants for different NACE activities 

 

Extrac-
tion of 
crude 
petro-
leum 

Manufac-
ture of 

basic iron 
and steel 

and of 
ferro-
alloys 

Manufac-
ture of 
cement 

Manufac-
ture of 
other 

inorganic 
basic 

chemi-
cals 

Manufac-
ture of 
other 

organic 
basic 

chemi-
cals 

Manufac-
ture of 

paper and 
paper-
board 

Manufac-
ture of 
pulp 

Manufac-
ture of 
refined 
petro-
leum 

products 

Produc-
tion of 

electric-
ity 

Steam 
and air 
condi-
tioning 
supply 

Treat-
ment and 
disposal 
of non-

haz-
ardous 
waste 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel A: Dependent variable: ln(SOx) 
ln(CO2) 

 
0.579*** 0.330* 

    
0.437*** 0.868*** 0.626*** 

 
  

(0.179) (0.173) 
    

(0.121) (0.059) (0.113) 
 Observations 

 
461 653 

    
835 2,696 930 

 No. of facilities 
 

78 132 
    

115 425 159 
 R2 

 
0.555 0.436 

    
0.667 0.539 0.486 

 CO2 (m t in 2012)  122.342 40.935     125.447 687.416 58.975  

Panel B: Dependent variable: ln(NOx) 
ln(CO2) 0.881*** 0.507*** 0.649*** 0.631*** 0.986*** 0.451*** 0.563*** 0.665*** 0.811*** 0.711*** 0.095 

 
(0.101) (0.109) (0.072) (0.214) (0.080) (0.107) (0.157) (0.091) (0.037) (0.082) (0.059) 

Observations 722 674 2,022 315 555 793 302 884 5,126 1,434 824 
No. of facilities 108 113 271 54 97 123 44 121 855 250 203 
R2 0.312 0.418 0.638 0.544 0.656 0.427 0.622 0.679 0.656 0.517 0.283 
CO2 (m t in 2012) 19.055 126.871 110.564 13.747 57.964 46.586 30.987 127.778 820.737 78.234 98.359 

Panel C: Dependent variable: ln(PM10) 
ln(CO2) 

 
0.305*** 

     
0.101 0.658*** 

  
  

(0.114) 
     

(0.168) (0.086) 
  Observations 

 
338 

     
301 1,354 

  No. of facilities 
 

61 
     

59 268 
  R2 

 
0.765 

     
0.629 0.468 

  CO2 (m t in 2012)  93.244      57.935 450.104     
Notes: All specifications include facility and country-by-time fixed effects. Standard errors in parentheses are clustered at the facility-level. *** p<0.01, ** 
p<0.05, * p<0.1 
Source: E-PRTR, authors’ calculations. 
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Figure 4: Effect of a log-point increase in CO2 on log co-pollutants by regional population 
density 

 
Notes: We sort facilities according to population density in their region, and then assign each facility to one of the 
following four groups, very low, low, high, or very high population density, such that each group captures one-
fourth of the respective sample observations. All specifications include facility and NACE-by-country-by-time 
fixed effects, a dummy for quartiles ranked by regional population density, and an interaction between these 
dummies and ln(CO2). Standard errors are clustered at the facility-level. The dark shaded area represents 90%, the 
light shaded area 95% confidence intervals. The sample size is 7,820 observations for SOX, 16,493 for NOX, and 
3,574 for PM10. 
Source: E-PRTR, authors’ calculations. 
 

In sum, we find some heterogeneity by CO2 emitter size, that seems, however, be driven by the 

sectoral composition of the emitter size classes. We find strong heterogeneity by economic 

activity, where especially electricity production stands out with above average co-pollution 

elasticities for all three co-pollutants. Finally, we find rather little variation over time and by 

regional population density. 

5.3 Co-pollutant elasticities in electricity production for CO2 variations induced 
by climate policy 

In this section we limit the variation in CO2 emissions to those induced by changes in climate 

policy, in order to evaluate reductions in co-pollutants directly attributable to greenhouse-gas 

policies. We estimate two-stage least squares (2SLS) versions of equation 1, where CO2 is 

instrumented with changes in environmental policy stringency that target CO2 emissions. We 

use the following subcategories of the OECD Environmental Policy Stringency Index, that are 
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typically classified as climate policies16: i.) trading schemes for CO2, ii.) trading schemes for 

renewable energy, iii.) trading schemes for energy efficiency, iv.) taxes on CO2, v.) feed-in 

tariffs for solar, and vi.) feed-in tariffs for wind.  

 

To assess if these climate policies are suitable instruments, in the first step we assess if they 

predict CO2 emissions. Since the OECD Environmental Policy Stringency Index focuses 

heavily on the energy sector, we present the results for the electric power sector only and for the 

remaining sectors. The results are shown in Table 5. The first specification (column 1) explains 

CO2 emissions in electricity production with climate policies, purging facility and year fixed 

effects. Taxes on CO2 are dropped from the specification due to a lack of variation, since most 

observations in our sample have a value of 0. Of the remaining five polices, all show a negative 

effect on CO2 emissions. An F-test on their joint significance allows us to reject the null 

hypothesis that all coefficients are zero. Thus, climate policy stringency is found to significantly 

reduce CO2 emissions in the average facility. The period under investigation includes the 

financial crisis of 2008/09, which had strong and persistent effects on economic output. To 

disentangle the effects of CO2 emission reductions due to production declines in response to the 

Great Recession and reductions due to climate policies, we include the logarithm of real 

national GDP as confounder in column 2.17 This specification leads to somewhat more precise 

estimates of the climate policy variables. CO2 trading schemes and wind feed-in tariffs have 

statistically significant negative effects on CO2 emissions. The F-test again confirms the joint 

significance of the policies. 

 

Since these climate policies indicators were constructed to capture policies in the energy sector, 

it would add to the credibility of the instruments if they are unable to predict CO2 in other 

sectors. The results in column 2 present results for similar specifications for the non-electricity 

sectors. Climate policies are found to be jointly insignificant. In what follows we therefore limit 

our investigation to electricity producing facilities. 

 

																																																								
16 See e.g. here https://www.eea.europa.eu/themes/climate/policy-context or here: 
https://climatepolicyinfohub.eu/interactions-between-climate-policies-examples-europe [last accessed: 2019-05-
05]. 
17 Real GDP is from the annual macro-economic database of the European Commission (AMECO). 
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Table 5: Effect of climate policy stringency on log CO2 for electricity production and other 
sectors 

 Electricity production  Other sectors 

 

 with 
ln(real 
GDP) 

  with 
ln(real 
GDP) 

 
(1) (2)  (3) (4) 

Green certificates 
trading schemes  

-0.004 -0.026 
 

0.020** 0.003 
(0.019) (0.016) 

 
(0.009) (0.006) 

CO2 trading 
schemes 

-0.030 -0.042** 
 

0.002 -0.002 
(0.023) (0.019) 

 
(0.007) (0.004) 

White certificates 
trading schemes  

-0.018 -0.016 
 

-0.013 -0.006 
(0.024) (0.021) 

 
(0.010) (0.005) 

Wind feed-in 
tariffs 

-0.017 -0.017* 
 

-0.008 -0.001 
(0.010) (0.009) 

 
(0.005) (0.003) 

Solar feed-in 
tariffs 

-0.007 0.001 
 

-0.012 -0.012* 
(0.010) (0.009) 

 
(0.008) (0.006) 

F-test on joint sign. 
(p-value) 0.076 0.011  0.646 0.134 

Observations 4,568 4,568 
 

11,413 11,413 
No. of facilities 840 840 

 
2,111 2,111 

R2 0.146 0.151   0.057 0.078 
Notes: Column 1 includes facility and time fixed effects, column 2 
includes facility, time, and NACE fixed effects. Standard errors in 
parentheses are clustered at the country-level. *** p<0.01, ** p<0.05, * 
p<0.1 
Source: E-PRTR, Botta and Koźluk (2014), AMECO, authors’ calculations. 

 

The results of the two-stage least squares estimation strategy for the energy sector, identifying 

co-pollution elasticities with exogenous climate policy changes, are presented in Table 6. For 

comparison, the first column shows results of the OLS model with facility and time fixed effects 

for the same samples. Column 2 shows results of the 2SLS regressions, including facility and 

time dummies, and instrumenting CO2 with climate policies. Since policies vary at the national-

level, standard errors are clustered at the country-level in the 2SLS specifications, which 

increases their size compared to clustering at the facility-level in column 1. The estimated co-

pollutant elasticities for SOx and NOx are highly statistically significant, and substantially larger 

than the OLS estimates in column 1. The elasticity for PM10 is somewhat larger in size than the 

OLS estimate, but not precisely estimated. 

 

To assess whether we are erroneously attributing effects on emissions of the Great Recession to 

stricter environmental policy, we control for real national GDP (in logarithms) in column 3. 
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This increases the precision of the estimates, and reduces the estimated elasticity for SOx, but 

has little effect on the magnitude of the other results.  

 

Following the approach of Belloni et al. (2014), there is little a priori reason to assume that 

these policies should enter as contemporaneous, independent, and linear variables. Since there 

might be complementarities between the policies, non-linarities, or lagged effects, a list of 

interactions, squared and cubic terms, and lags of the policy variables are also available as 

suitable instruments. This approach allows us to improve the first-stage estimates,18 and to 

assess the sensitivity of the results. We allow for non-linear effects by adding bi- and trivariate 

interactions of all instruments and further include up to five-year lags of all indicators. To 

choose relevant instruments with true predictive power from this list, we apply the Least 

Absolute Shrinkage and Selection Operator (LASSO) (see Belloni et al. 2014).19  

 

These LASSO-2SLS results are presented in column 4. Even though they are identified with 

different sets of instruments, they are quantitatively rather similar to the 2SLS results of column 

3, with elasticities of 1.4 for SOx, 1.1 for NOx, and 0.9 for PM10, but noticeably more precisely 

estimated, especially in the case of PM10.20 

 

 

																																																								
18 An F-test on the excluded instruments confirms strong first-stage results in all specifications. However, the 
testing procedure by Olea and Pflueger (2013), which is suitable for serially correlated and clustered errors, 
suggests otherwise. We obtain effective F-statistics and critical values that do not allow rejection of the null-
hypothesis of weak instruments for any of the three co-pollutants in columns 2 and 3 (see last line of panel). 
19 LASSO is a machine-learning algorithm that chooses predictors to minimize the sum of the squared residuals 
plus a term that penalizes the size of the model to avoid overfitting. The latter term guards against overfitting and 
ensures feasibility of estimation by returning a small set of relevant instruments. We set lamda, the parameter that 
penalizes the size of the model, such that it returns a sparse list of picked instruments that perform well in the weak 
instruments test of Olea and Pflueger (2013). The picked instruments are: the second lag of cubic CO2 trading 
schemes, and the fifth lag of white certificate trading schemes for the SOx-sample; the first lag of quadratic green 
certificate trading schemes interacted with solar feed-in-tariffs, the fifth lag of white certificate trading schemes, 
and the first lag of wind feed-in-tariffs for the NOx-sample; the fifth lag of CO2 trading schemes, the fifth lag of 
CO2 trading schemes interacted with wind feed-in-tariffs, the third lag of CO2 trading schemes interacted with wind 
feed-in-tariffs, the fifth lag of white certificate trading schemes, the third lag of cubic white certificate trading 
schemes, and the first lag of squared solar feed-in-tariffs interacted with white certificate trading schemes for the 
PM10-sample. The first-stage results are presented in Appendix Table A3. 
20 Applying the Olea-Pflueger test, we can confidently reject the null-hypothesis of weak instruments in the first-
stage results for SOx and NOx, but not PM10. 
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Table 6: Effect of a log-point increase in CO2 instrumented by climate policy stringency on log co-pollutants for electricity 
production 

 
 

    

 

OLS 2SLS 2SLS with 
real GDP 

LASSO-
2SLS with 
real GDP 

LASSO-
2SLS with 
real GDP 
and co-

pollutant 
policies 

LASSO-
2SLS with 
real GDP 
and co-

pollutant 
policies 
(cubic) 

LASSO-
2SLS with 
real GDP 
and co-

pollutant 
policies 

(cubic and 
lagged) 

 
(1) (2) (3) (4) (5) (6) (7) 

Panel A: Dependent variable: ln(SOx) 
ln(CO2) 0.912*** 1.803*** 1.499*** 1.424*** 1.552*** 1.455*** 1.173*** 

 
(0.068) (0.379) (0.265) (0.206) (0.243) (0.184) (0.096) 

Observations 1,996 1,996 1,996 1,859 1,859 1,859 1,807 
No. of facilities 338 338 338 313 313 313 301 
R2 0.491 0.212 0.382 0.428 0.381 0.381 0.515 
Weak IV F-stat. > 

crit. value (10%) 
 

no no yes yes yes yes 

Panel B: Dependent variable: ln(NOx) 
ln(CO2) 0.837*** 1.453*** 1.387*** 1.102*** 1.071*** 1.070*** 0.969*** 

 
(0.043) (0.292) (0.250) (0.201) (0.178) (0.180) (0.064) 

Observations 3,947 3,947 3,947 3,461 3,461 3,461 3,369 
No. of facilities 704 704 704 595 595 595 580 
R2 0.627 0.386 0.438 0.599 0.611 0.612 0.647 
Weak IV F-stat. > 

crit. value (10%) 
 

no no yes yes yes yes 

Panel C: Dependent variable: ln(PM10) 
ln(CO2) 0.677*** 0.817 0.834 0.903** 0.888** 0.883** 0.886** 

 
(0.086) (0.804) (0.764) (0.403) (0.424) (0.402) (0.359) 

Observations 952 952 952 893 893 893 878 
No. of facilities 199 199 199 185 185 185 180 
R2 0.359 0.353 0.355 0.350 0.353 0.353 0.351 
Weak IV F-stat. > 

crit. value (10%) 
 

no no no no yes yes 

Notes: All specifications include facility and time fixed effects. Standard errors in parentheses are clustered at the facility-level (OLS) 
or country-level (2SLS). *** p<0.01, ** p<0.05, * p<0.1 
Source: E-PRTR, Botta and Koźluk (2014), AMECO, authors’ calculations. 
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Although air quality co-benefits so far have not been included in EU climate policy design, it is 

possible that industrial facility operators’ responses to new climate policies took air quality co-

benefits into account. For example, the implementation of the European emissions trading 

scheme (ETS) for carbon emissions overlapped partially with the introduction of emission limits 

on co-pollutants. By switching to non-carbon energy sources, facility operators could reduce 

emissions of CO2 and co-pollutants simultaneously. To investigate whether policy stringency for 

co-pollutant emissions might be a relevant omitted variable, we re-estimate the LASSO 

specifications, adding controls for the stringency of taxes and emission limits for the respective 

co-pollutant. This information is also provided by the Botta and Koźluk (2014) dataset. We 

present three different versions. In column 5, we include linear and contemporaneous values of 

these regulatory confounders. The results are similar to those in column 4. In column 6, we also 

include squared and cubic terms. The results are again similar to those in column 4. Finally, in 

column 7 we additionally allow for up to five lags of the co-pollutant policies. The estimated co-

pollutant elasticities for SOx are modestly smaller compared to the results in column 4, 5, and 6, 

while they are very similar for NOx and PM10. We obtain elasticities of 1.2, 1.0, and 0.9 for SOx, 

NOx, and PM10, respectively.21  

 

Comparing the 2SLS co-pollution elasticities in column 7, based on variations in CO2 due to 

climate policy, to the OLS elasticities in column 1, based on all CO2 variations, it appears that 

climate policy-induced CO2 reductions have somewhat larger co-pollutant elasticities for all 

three pollutants. This suggests that climate policies may have had their largest effects on 

technologically outdated plants and processes with high co-pollutant emissions. For example, 

climate policies like the EU ETS, promoting renewable energy sources, or wind and solar feed-in 

tariffs might induce fuel switching from coal to natural gas, wind, or solar. McGuiness and 

Ellerman (2008) show for power plants in the UK that the first phase of the EU ETS led to an 

increase in natural gas utilization by about 22 percent while coal utilization decreased by 17 

percent. Similarly, the results for electric power firms in 10 European countries of Chan et al. 

(2013) suggest that the EU ETS led to fuel switching from coal to natural gas.  

																																																								
21 The instruments pass the weak instruments test for all co-pollutant samples in columns 6 and 7. 
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6. Monetizing air quality co-benefits 

To compute monetary estimates of human health benefits from reduced co-pollutant emissions 

per ton of CO2 emission, we use a low and a high measure of the average damage costs per ton 

of industrial point-source emissions in the EU for the year 2012 for SOX, NOX, and PM10 (in 

2005 EUR). These measures were estimated by the EEA (2014a) using the E-PRTR dataset, 

based on a pathway-impact model of exposure and health damages, monetized by means of the 

official value of statistical life (VSL) or value of a statistical life year (VSLY), with the VSL 

approach generally yielding the higher valuations. 

 

To obtain the marginal air quality co-benefits from a ton of CO2 reduction, we multiply the 

baseline co-benefit elasticities (Table 3) by average co-pollutant intensity ratios (Table 2) and by 

damage costs (EEA 2014a). The monetized co-benefits, shown in Table 6, amount to 19 to 57 

EUR/tCO2 for SOX, 6 to 15 EUR/tCO2 for NOX, and 4 to 11 EUR/tCO2 for PM10 (in 2005 EUR). 

The joint magnitude of these benefits is 29 to 82 EUR/tCO2, a result consistent with magnitudes 

suggested by previous studies. Taking the average of the results for European countries reported 

by Nemet et al. (2010, Table A.1) and converting them into 2005 EUR yields overall co-benefits 

of about 50 EUR/tCO2 for all sectors. For facilities in electricity production, the joint co-benefits 

range from 33 to 95 EUR/tCO2 for all CO2 emissions, and from 36 to 104 EUR/tCO2 for climate 

policy-induced changes in CO2 emissions.22 

 

For comparison, the EEA (2014a) estimates the climate damage costs from CO2 emissions to 

range from 10 to 38 EUR/tCO2 (again in 2005 EUR).23 The monetized co-benefits therefore 

amount to 80 to 820% of CO2 climate damage costs for the full sample, 90 to 950% of CO2 
																																																								
22 Since spatially disaggregated exposure data for industrial point-source releases are not available, the calculations 
in Table 6 do not consider the number of people exposed. However, since it is likely that on average the number of 
people exposed is higher in more densely populated areas, and since population density is significantly higher – by 
21-25% for the different co-pollutant samples – in regions where electricity producers are located compared to the 
location of other industrial facilities, monetized co-benefits for the electricity producing sector might be understated. 
For the calculation of policy-induced co-benefits we use the lowest IV-estimate in Table 6. The results in Table 7 
thus can be seen as a lower bound. 
23 The lower number reflects the modeled price of CO2 in the EU Emissions Trading Scheme in 2020 in a scenario 
where current but no additional legislation is implemented (it is therefore similar to a business-as-usual scenario), 
and the higher number is the carbon price in 2030 projected to achieve a 40% reduction in greenhouse gas emissions 
compared to 1990 levels. The EEA (2014a) uses these carbon prices to quantify carbon emissions damages from 
industrial facilities as part of assessing the overall cost of industrial air pollution damages. Alternative estimates of 
the Social Cost of Carbon vary widely, depending on the discount rate and other assumptions (IPCC 2014). 
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damage costs for electricity producers, and 100 too 1,040% of CO2 damage costs for policy-

induced co-benefits in the electricity sector.24 These results suggest that substantially higher 

carbon prices can be justified based on air quality co-benefits alone. 

 

Table 7: Monetary co-benefits 

  

Co-pollutant 
elasticities from 
Table 3, 4, or 5 

Average co-
pollutant-to-CO2 

ratios for 
respective sample 

Damage costs from EEA 
(2014a) in 2005 EUR/tCO2 

Monetary co-benefits in 
2005 EUR/tCO2 

low high low high 
All facilities 

SOx 0.727 0.0027239 9,792 28,567 19.39 56.57 
NOx 0.730 0.0017541 4,419 11,966 5.66 15.32 
PM10 0.501 0.0003149 22,990 66,699 3.63 10.52 

Electricity production 
SOx 0.868 0.0027523 9,792 28,567 23.39 68.25 
NOx 0.811 0.0019053 4,419 11,966 6.83 18.49 
PM10 0.658 0.0001981 22,990 66,699 3.00 8.69 

Electricity production – climate policy induced 
SOx 1.173 0.0022408 9,792 28,567 25.74 75.09 
NOx 0.969 0.0018092 4,419 11,966 7.75 20.98 
PM10 0.817 0.0001520 22,990 66,699 2.85 8.28 
Notes: The average damage costs for all industrial facilities were also used for the subsample of facilities in 
electricity production, since per ton co-pollutant damage cost estimates for electricity production are not available. 
Source: EEA (2014a) table 3.1, E-PRTR, authors’ calculations. 
 

7. Conclusions 

The World Health Organization (2016, p. 11) characterizes air pollution as the “biggest 

environmental risk to health” around the world. The Lancet Commission on Health and Climate 

Change warns that climate change threatens to undermine half a century of progress in global 

health, and more optimistically foresees that response to climate change could be “the greatest 

global health opportunity of the 21st century” (Watts et al. 2105, p. 1861). An integrated analysis 

of CO2 emissions and co-emitted air-pollutants is therefore of high academic and policy 

relevance. 

 

																																																								
24 These calculations compare high (low) CO2 damage costs with low (high) co-pollutant damage costs, adding up 
all three co-pollutant damages. 
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This paper’s investigation of co-pollutant elasticities with respect to CO2 emissions, based on 

facility-level data disaggregated across sources and across co-pollutants, fills an important gap in 

the literature. For industrial point sources in Europe as a whole, we find that in the time period 

2007 to 2015 a 1% reduction in CO2 emissions resulted in about a 0.7% reduction in SOX and 

NOX emissions, and a 0.5% reduction in PM10 emissions. In the electricity sector, which is the 

largest contributor to Europe’s industrial carbon emissions, these elasticities were higher: a 1% 

reduction in CO2 emissions is associated with a 0.9% reduction in SOX, 0.8% reduction in NOX, 

and a 0.7% reduction in PM10 emissions. Elasticities in the electricity sector for CO2 reductions 

specifically induced by climate policies are still higher at 1.2%, 1.0%, and 0.8% for SOX, NOX, 

and PM10, respectively. These findings provide useful inputs not only for assessing the 

magnitude of air quality co-benefits from carbon mitigation policies, but also for the design of 

spatially and sectorally differentiated policies that take into account variations in co-pollutant 

damages per ton of CO2. 

 

Monetizing the health impacts of co-pollutant emissions using EEA estimates of damage costs, 

we obtain air quality co-benefits of 29 to 104 Euros per ton of CO2 for the three co-pollutants 

jointly. This is substantially higher than EEA estimates of climate damage costs per ton of CO2. 

The implication of this finding is that higher carbon prices can be justified in Europe as a “no 

regrets” policy, independent of their climate benefits. Due to sectoral differences in co-pollutant 

intensities and elasticities, our results suggest that differentiated carbon mitigation policies may 

improve efficiency beyond that of uniform policies. 

 

Potentially fruitful areas for future research include comparison of co-pollutant intensities and 

elasticities for industrial point sources to those for other emission sources, notably transportation. 

Facility-level studies in other countries and regions would shed light on whether and how 

European elasticities compare to corresponding sectors elsewhere. Finally, the fine degree of 

geographical resolution that can be obtained from facility-level data can be applied to the 

analysis of spatial differentiation in air quality co-benefits, an important policy issue from the 

standpoint of equity as well as efficiency.  
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9. Appendix 
 
Table A1: Summary statistics of the three samples used in the baseline regressions 

Specification Variable Obs. Mean Std. Dev. Min Max 

(1) ln(SOx) 7062 13.915 1.297 11.918 17.461 

(1) ln(CO2) 7062 20.367 1.212 18.421 22.935 

(2) ln(NOx) 14826 13.246 1.111 11.513 16.433 

(2) ln(CO2) 14826 19.990 1.073 18.421 22.935 

(3) ln(PM10) 3244 12.054 0.979 10.820 15.107 

(3) ln(CO2) 3244 20.816 1.218 18.421 22.935 

Source: E-PRTR, authors’ calculations. 
 
 
Table A2: Average ratios of co-pollutant emissions to CO2 emissions by NACE activity 

 

Production of 
electricity 

Manufacture 
of basic iron 
and steel and 

of ferro-alloys 

Manufacture 
of refined 
petroleum 
products 

Manufacture 
of cement 

Treatment and 
disposal of 

non-hazardous 
waste 

Steam and air 
conditioning 

supply 

Manufacture 
of paper and 
paperboard 

Extraction of 
crude 

petroleum 

SOX 0.0028 0.0014 0.0028 0.0010 
 

0.0035 
  NOX 0.0019 0.0012 0.0011 0.0018 0.0010 0.0013 0.0011 0.0034 

PM10 0.0002 
       Note: Ratios are calculated as averages of individual facility-level ratios. Ratios are only reported for NACE sectors with more than 400 observations. 

Source: E-PRTR, authors’ calculations. 
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Table A3: First-stage results of the 2SLS specifications in Table 6, explaining ln(CO2) 

 

2SLS 2SLS 
with real 

GDP 

LASSO-
2SLS 

with real 
GDP 

LASSO-
2SLS 

with real 
GDP and 

co-
pollutant 
policies 

LASSO-
2SLS 

with real 
GDP and 

co-
pollutant 
policies 
(cubic) 

LASSO-
2SLS 

with real 
GDP and 

co-
pollutant 
policies 

(cubic and 
lagged) 

 
(1) (2) (3) (4) (5) (6) 

Panel A: SOx sample 
Green certificates trading schemes  0.019 0.015 

    (0.018) (0.023) 
    CO2 trading schemes -0.000 -0.002 
    (0.031) (0.029) 
    White certificates trading schemes  -0.052*** -0.052*** 
    (0.016) (0.015) 
    Wind feed-in tariffs -0.015 -0.016 
    (0.013) (0.013) 
    Solar feed-in tariffs -0.009 -0.007 
    (0.014) (0.015) 
    (CO2 trading schemes3)t-2 

  
-0.001*** -0.001*** -0.001*** -0.001*** 

  
(0.000) (0.000) (0.000) (0.000) 

White certificates trading 
schemest-5   

-0.116*** -0.124*** -0.116*** -0.124*** 

  
(0.015) (0.016) (0.019) (0.016) 

Observations 1,996 1,996 1,859 1,859 1,859 1,807 
No. of facilities 338 338 313 313 313 301 
Weak IV F-stat. > crit. value 
(10%) no no yes yes yes yes 

Panel B: NOx sample 
Green certificates trading schemes  -0.006 -0.022 

    (0.015) (0.013) 
    CO2 trading schemes -0.021 -0.030* 
    (0.019) (0.018) 
    White certificates trading schemes  -0.019 -0.018 
    (0.019) (0.017) 
    Wind feed-in tariffs -0.015* -0.015* 
    (0.008) (0.008) 
    Solar feed-in tariffs -0.007 -0.002 
    (0.008) (0.008) 
    (Solar feed-in tariffs x Green 

certificates trading schemes2)t-1   
-0.001*** -0.001*** -0.001*** -0.001*** 

  
(0.000) (0.000) (0.000) (0.000) 

White certificates trading 
schemest-5   

-0.069*** -0.067*** -0.057** -0.041** 

  
(0.019) (0.025) (0.025) (0.019) 

Wind feed-in tariffst-1 
  

-0.011** -0.012*** -0.016*** -0.020*** 

  
(0.005) (0.004) (0.006) (0.005) 

Observations 3,947 3,947 3,461 3,461 3,461 3,369 
No. of facilities 704 704 595 595 595 580 
Weak IV F-stat. > crit. value 
(10%) no no yes yes yes yes 
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Table A3 continued 
Panel C: PM10 sample 

Green certificates trading schemes  -0.002 -0.004 
    (0.022) (0.026) 
    CO2 trading schemes -0.016 -0.017 
    (0.019) (0.018) 
    White certificates trading schemes  -0.034*** -0.034*** 
    (0.012) (0.012) 
    Wind feed-in tariffs 0.002 0.002 
    (0.013) (0.012) 
    Solar feed-in tariffs -0.014 -0.013 
    (0.017) (0.016) 
    CO2 taxest-5 

  
-0.006 -0.007 0.008 -0.052 

  
(0.037) (0.036) (0.041) (0.037) 

(CO2 taxes x Wind feed-in 
tariffs)t-3   

0.065*** 0.065*** 0.066*** 0.058*** 

  
(0.005) (0.005) (0.005) (0.005) 

(CO2 taxes x Wind feed-in 
tariffs)t-5   

-0.067*** -0.067*** -0.069*** -0.055*** 

  
(0.006) (0.007) (0.007) (0.008) 

White certificates trading 
schemest-5   

-0.033* -0.010 -0.036 0.098*** 

  
(0.017) (0.015) (0.034) (0.029) 

(White certificates trading 
schemes3)t-3   

-0.001*** -0.001*** -0.001*** -0.000 

  
(0.000) (0.000) (0.000) (0.001) 

(White certificates trading 
schemes x Solar feed-in tariffs2)t-1   

-0.002*** -0.003*** -0.003*** -0.006*** 

  
(0.001) (0.001) (0.001) (0.001) 

Observations 952 952 893 893 893 878 
No. of facilities 199 199 185 185 185 180 
Weak IV F-stat. > crit. value 
(10%) no no no no yes yes 

Notes: All specifications include facility and time fixed effects. Standard errors in parentheses are clustered at the 
country-level. *** p<0.01, ** p<0.05, * p<0.1 
Source: E-PRTR, Botta and Koźluk (2014), authors’ calculations. 
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Figure A1: Total annual emissions of sample facilities (in mio t) 

 
Source: E-PRTR, authors’ calculations. 
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Figure A2: Average emissions per facility (in mio t) 

 
Source: E-PRTR, authors’ calculations. 
 
 
Figure A3: Co-pollutant intensity ratios over time (average facility-level ratio between co-
pollutant and CO2 emissions) 

 
Notes: Ratios are calculated as averages of individual facility-level ratios. 
Source: E-PRTR, authors’ calculations.  
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