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Abstract 
 

This study presents alternative measures of environmental inequality in the 50 U.S. states  
for exposure to industrial air pollution. We examine three methodological issues. First, to 
what extent are environmental inequality measures sensitive to spatial scale and 
population weighting? Second, how do sensitivities to different segments of the overall 
distribution affect rankings by these measures? Third, how do vertical and horizontal 
(inter-group) inequality measures relate to each other? We find substantive differences in 
rankings by different measures and conclude that no single indicator is sufficient for 
addressing the entire range of equity concerns that are relevant to environmental policy; 
instead multiple measures are needed. 
 
Keywords: Inequality measurement, Gini coefficient, environmental justice, air pollution. 
 
JEL codes: I14, Q53, Q56, R11. 
 
Acknowledgements: Research for this paper was supported by the Institute for New Economic 
Thinking (INET) Grant No. INO13-00028 and by the National Science Foundation Grant No. 
SES-1060904. We are also grateful to the Research Database Complex (RDC) at Indiana 
University, funded by Shared University Research grants from IBM, Inc., for hosting the database 
for this project. An earlier version of this paper was published by the INET Working Group on 
the Political Economy of Distribution, Working Paper No. 4, May 2014, under the title "Three 
Measures of Environmental Inequality."

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
* Political Economy Research Institute and Department of Economics, University of 
Massachusetts Amherst. Email: boyce@econs.umass.edu. 
 
** Institute for Ecological Economics, Department of Socioeconomics, Vienna University of 
Economics and Business. Email: klara.zwickl@wu.ac.at. 
 
*** Department of Economics and Center for Public Policy and Administration, University of 
Massachusetts Amherst. Email: mash@econs.umass.edu. 



	  
2	  

1. Introduction 
 
Pollution is a public bad – the opposite of a public good – but its burdens are not shared 
equally across the public. In the United States, a large body of research has documented 
the disproportionate environmental burdens faced by racial and ethnic minorities and 
low-income households (see, for example, Szasz and Meuser 1997; Ash and Fetter 2004; 
Mohai 2008; Bullard et al. 2011). These and other disparities are important features of 
many environmental landscapes. 
 
In examining environmental inequalities, a number of studies have applied inequality 
measures that were originally developed to measure the distribution of income and 
wealth. Many of these have focused on international inequalities, including inter-country 
disparities in carbon emissions (Heil and Wodon 2000; Duro 2012) and resource use 
(Druckman and Jackson 2008). With the exception of one study in the state of Maine 
(Bouvier 2014), however, inequality measures have not been applied to the distribution of 
industrial air pollution exposure within the U.S.  
 
In this study we present several different inequality measures for industrial air pollution 
exposure in the U.S. states and compare the resulting inter-state rankings. The extent of 
pollution exposure disparities between racial and ethnic groups and income classes has 
been found to vary considerably across U.S. regions (Zwickl et al. 2014) and 
metropolitan areas (Downey 2007). Here we conduct our analysis at the state level, 
intermediate between larger regions and smaller metropolitan areas. Inter-state 
comparisons are of interest because states vary both in the strength and of environmental 
regulations and in the extent to which their environmental policies incorporate explicit 
distributional objectives (Bonorris 2010).  
 
Using data on exposure to industrial air toxics from the Risk-Screening Environmental 
Indicators (RSEI) database of the U.S. Environmental Protection Agency (EPA), we 
compute several measures of inequality to consider three important questions:  
 

• First, to what extent are measures of environmental inequality sensitive towards 
the spatial scale and population weights? Previous studies have emphasized the 
importance of fine spatial disaggregation to avoid the so-called “ecological 
fallacy” – erroneous inferences about smaller geographical units or individuals 
drawn from data on larger aggregates (Ash and Fetter 2004). We apply a well-
known measure of inequality – the  Gini coefficient – to air pollution exposure 
and compare measures based on 810 meter-square grid cells to those based on 
(generally larger) census tracts to examine whether these alternative units of 
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observation yield substantially different results. In addition, we examine the effect 
of weighting these spatial units by their population. 
 

• Second, how do the sensitivities of inequality measures to different ranges of the 
distribution affect inter-state rankings? In the case of industrial air pollution, 
exposures often are concentrated at the top of the distribution: many households 
are exposed to relatively low levels, while a small percentage are exposed to very 
high levels. Researchers and policy makers may be particularly interested in 
measures that are more sensitive to differences within the upper range of the 
distribution. 
 

• Third, how do inter-state rankings based on vertical inequality compare to 
rankings based on horizontal inequality? Vertical measures of inequality 
differentiate the population solely by the variable of interest (here, pollution 
exposure), whereas horizontal measures partition the population on the basis of 
other characteristics. Here we consider pollution exposure differences by minority 
status and income, criteria in the environmental justice policies of federal and 
state agencies. 

 
Section 2 reviews motivations for measuring environmental inequality – why the 
distribution of environmental harm may matter as well as its overall magnitude. Section 3 
discusses the data used in our analysis. Section 4 explains the methods used to calculate 
alternative measures of exposure inequality, and section 5 presents the results of applying 
these to industrial air pollution exposure in the 50 states. Section 6 concludes with a 
discussion of the policy implications of our findings and potential avenues for further 
research on environmental inequality. 
 
2. Welfare effects of environmental inequality 
 
As scholars of income and wealth distribution have pointed out, the choice of inequality 
measures is not only a technical question but also depends on underlying notions of social 
welfare (Atkinson 1970). Before discussing alternative measures, therefore, it is useful to 
consider the welfare implications of environmental inequality. 
 
The distribution of environmental quality matters for social welfare for at least three 
reasons. The first is intrinsic, founded on the normative principle that every person has an 
equal right to a clean and safe environment. The second is instrumental: environmental 
quality can have important impacts on opportunities to lead a healthy and productive life, 
and equality of opportunities is widely accepted as a normative goal. The third, also 
instrumental, is that environmental quality can have important impacts on economic 
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outcomes for individuals and communities, the distribution of which has been the primary 
concern of economists who study inequality. This section discusses these rationales with 
a focus on air pollution, which is characterized by the World Health Organization (2014) 
as "the world's largest single environmental health risk."  
 
2.1 Intrinsic value of environmental equity 
 
The normative principle that every person has the right to a clean and safe environment 
has been widely affirmed in recent decades in the most fundamental of legal documents, 
national constitutions. The post-apartheid Constitution of the Republic of South Africa, 
for example, states: “Every person shall have the right to an environment which is not 
detrimental to his or her health or well-being.” The Constitution of Argentina similarly 
affirms, "All residents enjoy the right to a healthy, balanced environment." The 
Constitution of Chile guarantees to all persons "the right to live in an environment free 
from contamination." The Constitution of Portugal provides, "Everyone shall have the 
right to a healthy and ecologically balanced human environment and the duty to defend 
it."1 
 
The U.S. Constitution does not explicitly guarantee the right to a clean and safe 
environment, but implicit endorsement of this principle is "already contained in the 
thousands of pages of federal environmental statutes and regulations now on the books" 
(Meltz 1999). The Clean Air Act, for example, directs the EPA to promulgate and 
enforce ambient air quality standards, "the attainment and maintenance of which … are 
requisite to protect the public health."2 Explicit affirmations of the right to a clean and 
safe environment were added to a number of U.S. state constitutions starting in the 1970s. 
The Massachusetts Constitution states, “The people shall have the right to clean air and 
water.” The Hawaii Constitution provides, "Each person has the right to a clean and 
healthful environment, as defined by laws relating to environmental quality, including 
control of pollution and conservation, protection and enhancement of natural resources." 
The Illinois Constitution affirms, "Each person has the right to a healthful environment." 
The Pennsylvania Constitution specifies, "The people have a right to clean air, pure 
water, and to the preservation of the natural, scenic, historic and esthetic values of the 
environment." The Montana Constitution states, in language that evokes the U.S. 
Declaration of Independence, "All persons are born free and have certain inalienable 
rights. They include the right to a healthful environment…"  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Similar statements appear in the Constitutions of many other nations. For examples and discussion, see 
Popovic (1996). 
	  
2 42 U.S. Code §7409 - National primary and secondary ambient air quality standards. 
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By asserting the normative principle that all persons have a right to a clean environment, 
these provisions place an intrinsic value on the distribution of environmental quality. 
Regardless of how the practical matter of translating this goal into policies is handled – 
including the question of how clean the environment must be in order to qualify as 
"clean" – this principle implies that the environmental rights of some should not take 
precedence over the environmental rights of others. 
 
Presidential Executive Order 12898, issued by Bill Clinton in 1994, directs each U.S. 
government agency to take steps to identify and rectify “disproportionately high and 
adverse human health or environmental effects of its programs, policies, and activities on 
minority populations and low-income populations,” explicitly inscribing equity across 
groups defined on the basis of race, ethnicity and economic status into federal 
environmental policy. Many states have also adopted environmental justice policies 
(Bonorris 2010). In a proclamation marking the 20th anniversary of the executive order on 
environmental justice, President Barack Obama reaffirmed “every American's right to 
breathe freely, drink clean water, and live on uncontaminated land” (Obama 2014). 
 
2.2 Equality of opportunity 
 
A second motivation for concern about environmental inequality is its impact on equality 
of opportunity, which is widely accepted as a normative goal. “Much more important 
than inequality of outcomes among adults is inequality of opportunity among children,” 
write the authors of the World Bank’s Human Opportunity Index, noting that "the idea of 
giving people equal opportunity early in life, whatever their socioeconomic background, 
is embraced across the political spectrum” (Barros et al. 2009, p. xvii). 
 
Children are especially vulnerable to the health impacts of pollution, and environmental 
quality can significantly affect a child’s life chances (Currie 2011). The impacts extend to 
the odds of survival. For example, a study of the impact of reduced air pollution in the 
U.S. during the 1981-82 recession found that for each one percent decrease in total 
suspended particulates, infant mortality declined by 0.35 percent (Chay and Greenstone 
2003). Emissions controls implemented by the state of California are estimated to have 
prevented approximately 1,000 infant deaths from carbon monoxide exposure in the 
1990s (Currie and Neidell 2005).  
 
Air pollution also has adverse impacts on fetal health (Currie et al. 2009). Researchers 
have concluded that “a substantial proportion of cases of low birthweight at term could be 
prevented in Europe if urban air pollution was reduced” (Pedersen et al. 2013). Fetal 
exposure to industrial chemicals has been linked to neurodevelopmental disabilities 
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including autism, attention-deficit hyperactivity disorder, dyslexia and other cognitive 
impairments (Grandjean and Landrigan 2014).  
 
Exposure to airborne toxics has been found to have statistically significant negative effects 
on school test scores in metropolitan Los Angeles (Pastor et al. 2002, 2004). A study in 
Louisiana, found that proximity to Toxics Release Inventory (TRI) facilities and high-
volume emitters of developmental neurotoxins is significantly related to school 
performance (Lucier et al. 2011). Even transitory exposure to high levels of airborne 
particulates on exam days has been shown to have significant adverse impacts on student 
performance on high-stakes tests, leading in turn to negative effects on post-secondary 
education and adult earnings (Lavy et al. 2014). 
 
A further pathway by which air pollution affects educational opportunities is by causing 
school absences due to asthma and other illnesses. A study of elementary and middle school 
children in Texas found that air pollution had significant adverse effects on school 
attendance (Currie et al. 2009). A Michigan study found that schools located in 
neighborhoods with the highest industrial air pollution levels had the lowest attendance 
rates as well as the highest proportions of students who failed to meet state educational 
testing standards, after controlling for effects of other variables (Mohai et al. 2011).  

 
2.3 Equality of economic outcomes  
 
The distribution of pollution also has impacts on the distribution of economic outcomes, 
via impacts on property values, days lost from work and health costs. Air pollution has 
long been known to reduce property values (Anderson and Crocker 1971). Housing 
values within a one-mile radius have been found to decrease by 1.5% when a TRI facility 
opens and to rise by 1.5% when one closes (Currie et al. 2015). Air quality improvements 
following implementation of the Clean Air Act led to an estimated $45 billion increase in 
housing values in the 1970s (Chay and Greenstone 2005).  
 
Air pollution also results in lost workdays. An analysis by EPA scientists estimated that 
airborne particulate matter from industrial point sources is responsible for 1.6 million lost 
workdays annually in the U.S. (Fann et al. 2013). Exposure to air pollution has also been 
shown to have statistically significant adverse impacts on worker productivity (Graff 
Zivin and Neidell 2012). 
 
The health costs of air pollution are large and unequally distributed. Announcing its 
Mercury and Air Toxics Standards for power plants in December 2014, the EPA 
estimated that they will yield annual health benefits valued at between $37 billion and 
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$90 billion, and that these are “especially important to minority and low income 
populations who are disproportionately impacted by asthma and other debilitating health 
conditions” (U.S. EPA 2014).  
 
The well documented inverse relationship between health and socioeconomic status may 
arise in part from differences in pollution exposure (Evans and Kantrowitz 2002). A 
study of New York City's Bronx borough found that poor and minority populations are 
more likely to live in proximity to noxious land uses, including TRI facilities, and that 
this is associated with a 66% increase in the likelihood of hospitalization for asthma 
(Maantay 2007). Exposure to multiple hazards has cumulative impacts (Brender et al. 
2011), and interactions with vulnerabilities linked to socioeconomic status can exacerbate 
health effects of environmental hazards (Morello-Frosch et al. 2011).  
 
3. Mapping exposure to industrial air toxics in the United States 
 
We measure industrial air toxics exposure using geographic microdata from the U.S. 
EPA’s Risk Screening Environmental Indicators (RSEI version 2.3.1) model for the year 
2010. The RSEI model is based on TRI data on air releases of more than 400 chemicals 
from more than 15,000 facilities. The model maps the dispersion of these releases, 
incorporating information on stack heights, exit gas velocities, wind patterns, and 
chemical decay rates in order to estimate ambient concentrations in grid cells, each 810 
meters square, within a 50-km radius around each facility. To measure total exposure 
aggregated across chemicals RSEI uses toxicity weights based on chronic human health 
effects. 
 
The RSEI data provide the best available measure of exposure to industrial air toxics. The 
data do not include emissions from mobile sources and small point sources, which also 
contribute to overall air pollution. In the communities that face the most severe air 
pollution burdens, however, the industrial point sources included in the RSEI database 
often loom large (Boyce and Pastor 2012). 
 
Median household exposure to industrial air toxics varies widely across the states, as 
shown in Figure 1a. The highest median exposure (in Utah) is roughly one thousand 
times more than the lowest (in Vermont). To examine intra-state variations, we first 
calculate toxicity-weighted exposures for each of the state's RSEI grid cells, aggregated 
across all facilities whose releases impact that cell. We use a crosswalk to map the grid-
cells to census blocks, which are the finest level of spatial resolution in the U.S. Census. 
We then compute exposure at the level of census tracts, calculated as the area-weighted 
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average of exposure in the tract’s constituent blocks.3 We find that exposure is distributed 
quite unevenly within states, as well as across them, as shown in Figure 1b. For example, 
the same state may include census tracts that rank both in the highest and lowest national 
exposure quintiles. 
 
[insert Figures 1a & 1b here] 
 
When measuring inequality in the distribution of income and wealth, the unit of 
observation typically is the individual or the household. In the case of spatial variables, 
such as pollution exposure, the choice of the unit of observation for measuring inequality 
is less straightforward. To guard against the "ecological fallacy" – where  conclusions 
drawn from aggregate data do not apply at finer levels of disaggregation – it  is desirable 
to base calculations on the smaller units of observation. It the present case, the smallest 
unit is the 810 meter x 810 meter RSEI grid cell. There are roughly 15 million grid cells 
nationwide, 9.7 million of which are exposed to industrial air pollution according to the 
RSEI model. Although grid cells have a fixed area, their population density can vary 
greatly. 
 
Alternatively, we can compute inequality measures using the 74,002 census tracts as the 
unit of observation. Census tracts often correspond to what residents consider to be their 
"neighborhoods," and for this reason inequality measures constructed on this basis are of 
intrinsic interest.4 Tracts are constructed by the Census Bureau to include roughly 4,000 
persons each; hence they vary in area due to differences in population density. Although 
grid cells generally provide finer spatial resolution, tracts are smaller than grid cells in 
densely populated urban areas. The number of grid cells per census tract ranges from 0.06 
in densely populated neighborhoods of New York City and Boston to tens of thousands in 
parts of western states such as Nevada and Alaska.  
 
The choice of whether to define spatial units on the basis of equal area or equal 
population is important from a policy standpoint as well for inequality measurement. 
Disparities across units of equal area could be reduced by prioritizing the most polluted 
areas, regardless of how many people live there. Such a policy approach could be 
justified on the normative premise that each individual should have equal access to 
environmental quality, regardless of the population density in the place they reside. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 We censor pollution exposure at the nationwide population-weighted 97th percentile (that is, we cap 
exposure at this value) to reduce the sensitivity of our results to outliers.  
 
4 Census tracts have been used as proxies for neighborhoods in analyzing environmental disparities (Zwickl 
and Moser 2014), housing segregation (Brueckner and Rosenthal 2009), unemployment (Topa 2001) and 
subprime credit markets (Richter and Craig 2013). 
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Disparities across units of equal population could be reduced by prioritizing areas that are 
more densely populated, even if they are not the most polluted. Such an approach could 
be justified on the normative premise that environmental policy should maximize the sum 
total of human health benefits. 
 
Here our focus is the distribution of pollution exposure across the population. For this 
reason we use population weights in calculating our inequality measures. Because grid 
cells generally are smaller than census tracts, a comparison between population-weighted 
inequality measures calculated on these two spatial bases can shed light on how much 
inequality arises from within-tract variations. In the case of income inequality, 
comparisons of measures calculated on the basis of tract-level versus household-level 
data show that a substantial component of overall inequality in the U.S. is attributable to 
within-tract differences (Galbraith and Hale 2008). In the case of exposure inequality, 
within-tract variation is likely to be less important, an expectation confirmed in our 
results. 
 
To measure horizontal inequality, we partition households on the basis of income and 
demographic variables obtained from the American Community Survey (ACS), using 
five-year averages for the years 2006-2010. The census tract is the finest level of 
disaggregation available for these variables.  
 
4. Environmental inequality measures 
 
In this study we compare seven alternative measures of environmental inequality, 
calculated using the methods described in this section. 
 
4.1 Vertical inequality 
 
Measures of vertical inequality rank individuals on the basis of the variable of concern 
(here, pollution exposure) and then summarize the extent of differences among them. 
 
4.1.1 Gini coefficient 
 
The Gini coefficient is widely used to measure inequality in the distribution of income, 
expenditure and wealth (Dorfman 1979; Cowell 1995). We calculate the Gini coefficient 
for exposure by means of the following formula (using Stata’s ineqdeco package):  
 

𝐺𝑖𝑛𝑖 = 1+
1
𝑛 − [

2
𝑀𝐸𝐴𝑁𝐸𝑋𝑃 ∗ 𝑛!] [ 𝑛 − 𝑖 + 1 ∗ 𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸!]

!

!!!
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where EXPOSUREi is industrial air toxics exposure in census tract (or grid cell) i; n = the 
number of tracts (or cells), indexed in non-decreasing order; and MEANEXP is the mean 
exposure for all tracts (or cells). The Gini coefficient lies in the interval between zero and 
one, with higher values denoting greater inequality. 
 
While the Gini coefficient satisfies key properties of inequality measures (mean 
dependence, population size independence, symmetry, and Pigou-Dalton transfer 
sensitivity; see Haughton and Khandker 2009), it is more sensitive to changes in the 
middle of the distribution than to changes at the tails (Atkinson 1970; Duro 2012).  
 
4.1.2 Theil index and Generalized Entropy measure  
 
The Generalized Entropy (GE) family of inequality measures vary in their sensitivity to 
changes at different ranges of the distribution. The GE(1) measure, more commonly 
known as the Theil index, is most sensitive to the middle range, like the Gini coefficient. 
The Theil index is calculated as follows:  
 

𝑇ℎ𝑒𝑖𝑙 =
𝑤!
𝑁   

𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸!
𝑀𝐸𝐴𝑁𝐸𝑋𝑃

!

!!!

log
𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸!
𝑀𝐸𝐴𝑁𝐸𝑋𝑃    

 
where wi is the population weight for census tract i; and N = 𝑤𝑖.!

!!!   
 
We also calculate a second GE measure, GE(2), that is more sensitive to changes in the 
upper range of the distribution: 
 

𝐺𝐸 2 =
1
2 ∗ [(

𝑤!
𝑁

𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸!
𝑀𝐸𝐴𝑁𝐸𝑋𝑃

!!

!!!

)− 1] 

 
The values of GE measures in principle can range between zero and infinity, with a 
higher value again reflecting greater inequality.  
 
4.2 Horizontal inequality 
 
Measures of horizontal inequality partition the population into groups based on 
characteristics other than the variable of distributional concern, and then calculate 
between-group differences in the variable. Here we define groups on the basis of (i) race 
and ethnicity, distinguishing between Anglo whites and "minorities"; and (ii) income, 
distinguishing between households with incomes above and below the federal poverty 
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line. Horizontal inequality along these axes is an explicit policy concern in U.S. federal 
and state environmental justice mandates.5 
 
4.2.1 Ratios of medians 
 
To compare exposures of racial and ethnic minorities to those of non-Hispanic whites 
(hereafter, simply “whites”), and to compare exposures of the poor to those of the 
nonpoor, we first calculate exposure levels for each population group:  
 

𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸! =    𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸! ∗ 𝑇𝑂𝑇𝐴𝐿𝑃𝑂𝑃! ∗ 𝑋!" / 𝑇𝑂𝑇𝐴𝐿𝑃𝑂𝑃! ∗ 𝑋!"

!

!!!

!

!!!

 

 
where subscript j indexes the population group; and Xij is the share of group j in the 
population of census tract i. This yields separate exposure distributions for each group. 
 
Our first horizontal inequality measure is the ratio at the medians of the group exposure 
distributions: the minority/white median exposure ratio and the poor/nonpoor median 
exposure ratio.  
 
4.2.2 Ratios of 90th percentiles 
 
Between-group exposure ratios may vary across the distributions, as illustrated in Figure 
2. At the national level, the minority/white exposure ratio is fairly constant: across the 
two distributions, the exposures of minorities are roughly 50% above those of whites. 
The poor/nonpoor ratio, however, rises with the exposure percentiles. At the lower end of 
the distributions, the poor face less exposure than the nonpoor, perhaps reflecting their 
residence in locations with very low levels of industrial activity; but at the upper end, the 
exposures of the poor are roughly 50% higher than those of the nonpoor. 
 
[insert Figure 2 here] 
 
Because the distribution of industrial air pollution exposure is highly skewed – the top 
quintile of census tracts nationwide accounts for more than 80% of the total pollution 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Some authors have suggested that people may voluntarily choose to trade off environmental quality for 
higher incomes, such that those who live in more polluted locations (where they can earn higher incomes) 
are not worse off in terms of net welfare (Millimet and Slottje 2002). Others maintain that income and 
environmental quality are incommensurable, so the gains in the former cannot compensate for losses of the 
latter (Heinzerling and Ackerman 2005; Khaw et al. 2015). If horizontal inequality measurement shows 
that people with lower incomes generally face more pollution exposure, rather than less, the question of 
whether the two variables can offset each other becomes less relevant for welfare comparisons. 
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load – horizontal inequality at the upper end of the distributions is of particular interest. 
To assess between-group inequalities in this range, we report the minority/white and 
poor/nonpoor ratios at the 90th percentiles of exposure. 
 
5. Results 
 
This section applies the inequality measures described above to industrial air pollution 
exposure for U.S. states. In calculating Gini coefficients, we examine the effects of taking 
census tracts versus RSEI grid cells as the units of observation, and the impact of 
population weights on grid cell-based Ginis. We also compare Gini coefficients exposure 
inequality to those for income inequality. We then present the Theil index and the GE(2) 
measures to examine how sensitivity to different ranges of the distribution affects vertical 
inequality measures. Turning to horizontal inequality, we present the median and p90 
exposure ratios to examine disparities between minorities and whites and between the 
poor and nonpoor. We then examine correlations between vertical and horizontal 
exposure inequality. Finally we examine correlation between exposure inequality and 
inter-state variations in exposure levels. 
 
5.1 Gini coefficients  
 
Three variants of the environmental Gini coefficient are reported in Table A.1. Those in 
the first column are based on tract-level data; those on the second column are based on 
unweighted grid cells; those in the third column are based on grid cells with population 
weights.6 For comparison, we also report Gini coefficients for income calculated from 
tract-level data and household-level data in the last two columns. 
 
The results show high degrees of environmental inequality. The between-tract Gini is 
0.76 at the national level, and it is 0.70 or higher in more than half of the states. The 
unweighted between-cell Gini is 0.93 at the national level, and it is higher than the 
between-tract Gini in almost all states. When we apply population weights to the 
calculation of between-cell Ginis, the results are nearly identical to the between-tract 
Ginis. This implies that intra-tract variations in exposure are minor compared to between-
tract variation. The choice between census tracts and grid cells as a basis for computing 
exposure Ginis is therefore of little consequence if we are interested in inequality across 
the population rather than across areal units. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Although each census tract contains approximately the same number of individuals, but not precisely the 
same number, we also apply population weights in calculating the tract-level Ginis reported here. 
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The situation is quite different in the case of income Ginis. Comparing Ginis that we 
calculated on the basis of median tract income to Ginis calculated from household-level 
data by the U.S. Census Bureau (both based on 2010 ACS data), we find a marked 
difference between the two: the between-tract income Gini is 0.25 at the national level, 
compared to the household income Gini of 0.47, and at the state level the differences 
between them often are larger. This reflects the existence of substantial intra-tract 
variations in incomes, consistent with the earlier findings of Galbraith and Hale (2008). 
 
The Gini coefficient for exposure inequality is considerably higher than that for income 
inequality at the national level, and higher in all but two states. We can safely conclude 
on the basis of this evidence that exposure to industrial air toxics in the U.S. is more 
unequally distributed than income. 
 
Table 1 presents Spearman rank correlations among the Gini coefficients. The between-
tract exposure Gini and the population-weighted between-cell Gini are correlated almost 
perfectly, so hereafter we simply use tracts as the unit of analysis. The weak negative 
correlations between the Gini coefficients for exposure and income suggest that neither 
type of inequality can serve as a suitable proxy for the other.  
 
[insert Table 1 here] 
 
5.2 Theil index and generalized entropy measures 
 
Table A.2 presents the Theil index and the GE(2) measures of vertical inequality, again 
calculated taking census tracts as the unit of analysis. In most cases the GE(2) measure is 
higher than the Theil index, indicating that greater sensitivity to exposure differences at 
the upper range of the distribution increases measured inequality.  
 
Table 2 presents Spearman rank correlations for the tract-level Gini coefficient, the Theil 
index and the GE(2) measure. All three measures of vertical inequality are positively 
correlated. The correlation between the Gini coefficient and the Theil index is close to 
one, consistent with their sensitivity to differences in the middle range of the distribution.  
 
[insert Table 2 here] 
 
5.3 Horizontal inequality: median exposure ratios 
 
Table A.3 presents our horizontal inequality measures. Nationwide, the minority/white 
median exposure ratio is 1.46.  Horizontal income inequality between whites and 
minorities is roughly comparable in magnitude: the ratio of their median household 
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incomes in 2010 was 1.4.7 The median exposure ratio is less than one in only ten states, 
and less than 0.67 only in the Dakotas and Montana, where Native Americans, many of 
whom reside far from industrial facilities, comprise the largest minority. In six states – 
Arkansas, California, Kentucky, Michigan, Minnesota and Wisconsin – median minority 
exposure is more than three times greater than median white exposure. 
 
The poor/nonpoor median exposure ratio nationwide is 1.11. Among the states it ranges 
from 0.35 in Idaho to 3.59 in Wyoming. This measure reflects the balance between two 
opposing effects. On the one hand, insofar as the presence of industry is correlated with 
higher incomes as well as higher pollution, the exposure of the poor would be expected to 
be less than that of the nonpoor, yielding a ratio smaller than one. On the other hand, 
insofar as more polluting facilities tend to be located in greater proximity to the lower-
income neighborhoods within industrialized areas, this would yield a ratio greater than 
one. Their net effect appears to vary considerably from state to state. The ratio is less than 
0.8 in nine states. It is above one in 26 states – and above three in Virginia and Wyoming 
– again indicating that higher pollution exposure often is not compensated by higher 
incomes. 
 
5.4 Horizontal inequality: 90th percentile exposure ratios 
 
Comparisons at the 90th percentiles for each group yield a minority/white exposure ratio 
of 1.41 and a poor/nonpoor exposure ratio of 1.33. The range of variation among states in 
the 90th percentile ratios is somewhat narrower than in the median ratios. Four states 
(Arkansas, Georgia, Illinois and Kentucky) have minority/white p90 ratios above 2.0, two 
(Virginia and Missouri) have poor/nonpoor p90 ratios above 2.0. 
 
5.5 Correlations among exposure inequality measures 
 
Table 3 presents Spearman rank correlation coefficients for the four horizontal inequality 
measures and the Gini and GE(2) measures of vertical inequality. In general, the 
correlations amongst them are fairly low, implying that inter-state rankings of 
environmental inequality can be quite sensitive to the choice of a measure. The strongest 
positive correlations are between the two measures of vertical inequality (0.82) and 
between the two measures of minority/white inequality (0.54). Correlations across 
measures of the two dimensions of horizontal inequality – the minority/white and 
poor/nonpoor ratios – are also positive, but not as strong. 
 
[insert Table 3 here] 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Calculated from DeNavas-Walt et al. (2011), Table A-1, "Income and Earnings Summary Measures by 
Selected Characteristics: 2007 and 2010." 
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The correlations between vertical and horizontal inequality measures are weak, and in 
many cases they are negative. One might have expected, a priori, that states with greater 
vertical inequality – that is, a wider range of exposure across the entire population – 
would also tend to show greater horizontal inequalities between groups defined on the 
basis of minority status or income. To illustrate that this is not necessarily true, in Figure 
3 we compare the percentile-wise exposures for minorities and whites in two states, Ohio 
and Virginia. Ohio has a relatively low Gini and relatively high minority/white median 
ratios, while Virginia has the opposite. The contrast implies that multiple measures of 
exposure inequality are necessary to capture its different dimensions.8 
 
[insert Figure 3 here] 
 
5.6 Correlations between levels and inequality  
 
Table 4 presents correlations between our exposure inequality measures and exposure 
levels at the median and the 90th percentile of the state's distribution.9 The negative 
correlations between exposure levels and vertical inequality mean that industrial air 
pollution exposure tends to be distributed more unequally in states with less of it. This 
reflects the fact that some states (for example, Alaska and Vermont) have very low 
exposure levels in most tracts but substantial exposure levels in a few.  
 
[insert Table 4 here] 
 
Minority/white exposure ratios, on the other hand, are positively correlated with  
exposure levels; that is, pollution exposure tends to be higher in states where it is more 
strongly concentrated in minority communities. This is consistent with the previous 
finding that in U.S. metropolitan areas with greater minority/white pollution exposure 
discrepancies, whites as well as minorities have higher exposures than in metropolitan 
areas with smaller discrepancies (Ash et al. 2013). Causal explanations for this 
relationship could run in either or both directions: environmental regulation may tend to 
be weaker in states where pollution burdens fall more heavily on minorities, and there 
may be a greater tendency to shift pollution burdens onto minority communities in states 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Two further features of Figure 3 deserve comment. First, more than 15% of Ohio’s minority population 
lives in census tracts with exposure at or above the 97th national percentile (the level at which our exposure 
data are censored, flattening the curve). Second, the most exposed decile of whites in Virginia faces 
considerably higher exposure than the most exposed decile of minorities. As noted above, Virginia’s 
poor/nonpoor median and p90 exposure ratios are above 3.0; taken together, these observations indicate 
disproportionately high exposures among poor whites in the state. 
 
9 Median and 90th percentile exposure levels are reported in the supplementary material that accompanies 
this paper.	  



	  
16	  

with more pollution. Both explanations suggest that racial and ethnic disparities in 
political power can have important consequences for state environmental policies. 
 
6. Policy implications and avenues for future research 
 
This analysis of the distribution of industrial air pollution exposure in the U.S. 
demonstrates the multi-dimensionality of environmental inequality. Comparing a number 
of alternative measures of vertical and horizontal (between-group) we find that these can 
often yield quite different inter-state rankings of environmental inequalities.  
 
Comparing vertical inequality in the distribution of exposure to that in the distribution of 
income, we find much greater inequality in exposure. At the national level, the Gini 
coefficient for exposure in 2010 was 0.76, well above the Gini coefficient for income. 
Vertical inequality in the distribution of exposure is a matter of concern if one accepts the 
normative principle that every person has an equal right to a clean and safe environment. 
Of course, the extent to which pollution exposures exceed levels judged to be “safe” is 
also important. Even in those states where the median exposure is relatively low, 
however, measures of vertical inequality can be of interest to assess the possibility that  
average measures may mask serious environmental risks in specific communities.  
 
Environmental inequalities may be considered especially objectionable when those who 
face disproportionate harms are also disadvantaged in other respects. Environmental 
justice policies in the U.S. seek to remedy and prevent disproportionately environmental 
health impacts on minorities and low-income communities. For such policies, measures 
of horizontal inequality are of particular relevance. 
 
When the distribution of environmental harm is highly skewed, as in the case of exposure 
to industrial air pollution, it is important to employ inequality measures that are sensitive 
to differences in the upper range of the distribution. To measure vertical inequality, the 
GE(2) measure may be preferable in this respect to the Gini coefficient or Theil index. To 
measure horizontal inequality, exposure ratios at the 90th percentile of the distributions 
may be preferable to exposure ratios at the medians. 
 
However it is measured, inequality is only one of several relevant criteria for assessing 
environmental policy outcomes. No one would claim that social welfare would be 
improved by increasing pollution exposure in all census tracts until it equals that in the 
most exposed one, notwithstanding the fact that this would be one way to eliminate 
exposure inequality. But in deciding where to allow new pollution sources to be sited, or 
where prioritize abatement and enforcement efforts among existing sources, impacts on 
environmental inequality may be a relevant policy criterion. The development of 
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inequality measures to assist in the pursuit and evaluation of this objective can help to 
counter complacency about the existence of "sacrifice zones," communities burdened by 
exceptionally high pollution loads, and can help to catalyze greater attention among 
researchers and the public to the distribution of environmental quality. 
 
Further research is needed to develop comparable measures for other types of 
environmental inequality, including exposure to mobile-source air pollution and to water 
pollution. Among other things, this will allow researchers to investigate whether 
variations in these aspects of environmental inequality are correlated with the variations 
in exposure inequality reported here. There is also scope for measuring and analyzing 
environmental inequality at other spatial scales, such as within metropolitan areas. 
Finally, measurement of environmental inequality creates possibilities for researchers to 
analyze its relationship to other variables of interest to social scientists and policy 
makers, such as residential segregation, voting behavior and state environmental policies. 
 
Appendix 
 
[insert Tables A.1 to A.3 here] 
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Table 1: Gini coefficients: Spearman rank correlations 

 

Between-tract 
exposure  

Gini 
 

Between- cell 
exposure Gini 
(unweighted) 

 

Between-cell 
exposure Gini 
(population- 
weighted) 

Between-tract 
income Gini 

 
 

Individual 
income  

Gini 
  

Between-tract exposure 
Gini 1.00 

    Between-cell exposure Gini 
(unweighted) 0.58 1.00 

   Between-cell exposure Gini 
(population weighted) 1.00 0.59 1.00 

  Between-tract   
income Gini -0.26 -0.24 -0.29 1.00 

 Individual income Gini  -0.21 -0.43 -0.23 0.78 1.00 
 
 
 
 
Table 2: Three measures of vertical inequality: Spearman rank correlations 

 
Gini  Theil index GE(2) 

Gini 1.00  
 Theil index 0.98 1.00 
 GE(2) 0.82 0.92 1.00 
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Table 3: Horizontal and vertical inequality: Spearman rank correlations  

 

Gini 
 

GE(2) 
 

Minority/ 
white 

median 

Minority/
white  
p90 

Poor/ 
nonpoor 
median 

Poor/ 
nonpoor 

p90 
Gini 1.00 

     GE(2) 0.82 1.00 
    Minority/white median -0.32 -0.37 1.00 

   Minority/white p90 -0.15 -0.28 0.54 1.00 
  Poor/nonpoor median -0.24 -0.13 0.42 0.06 1.00 

 Poor/nonpoor p90 0.13  0.03 0.31 0.49 0.33 1.00 
 
 
 
 
 
 
 
Table 4: Exposure levels and exposure inequality: Spearman rank correlations 

 

Median exposure 
 

p90 exposure 
 

Gini -0.65 -0.29 
GE(2) -0.77 -0.60 
Minority/white median 0.47 0.38 
Minority/white p90 0.36 0.38 
Poor/nonpoor median 0.07 -0.07 
Poor/nonpoor p90 0.18 0.23 
Median exposure 1.00 0.86 
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Figure 1a: Industrial air toxics exposure by state 

 
 
 

 
Figure 1b: Industrial air toxics exposure by census tract 
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                      Figure 2: Horizontal inequality ratios by exposure percentile 
 

             
   
 
  

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

1.6	  

1.8	  

	  
p10	  

	  
p25	  

	  
p50	  

	  
p75	  

	  
p90	  

	  
p95	  

Minority/white	  exposure	  ratio	   Poor/nonpoor	  exposure	  ratio	  



	  
26	  

 
Figure 3: Minority and white exposure by percentile: Ohio and Virginia 
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Table A.1: Gini coefficients for exposure and income 

 
 Exposure Income 
 ___________________________________ ___________________ 

 

Between-
tract 

 

Between-cell, 
unweighted 

 

Between-cell, 
population- 
weighted 

Between-
tract  

 

Individual  
 
 

      
Alabama 0.73 0.80 0.73 0.21 0.47 
Alaska 0.91 1.00 0.92 0.17 0.42 
Arizona 0.76 0.96 0.75 0.26 0.46 
Arkansas 0.81 0.87 0.81 0.18 0.46 
California 0.80 0.96 0.79 0.29 0.47 
Colorado 0.71 0.95 0.71 0.22 0.46 
Connecticut 0.61 0.60 0.60 0.25 0.49 
Delaware 0.48 0.70 0.49 0.20 0.44 
DC 0.34 0.38 0.35 0.33 0.53 
Florida 0.72 0.78 0.71 0.24 0.47 
Georgia 0.70 0.76 0.69 0.23 0.47 
Hawaii 0.53 0.92 0.55 0.18 0.43 
Idaho 0.81 0.97 0.81 0.16 0.43 
Illinois 0.60 0.81 0.59 0.25 0.47 
Indiana 0.65 0.73 0.65 0.18 0.44 
Iowa 0.82 0.77 0.82 0.15 0.43 
Kansas 0.74 0.91 0.73 0.21 0.45 
Kentucky 0.71 0.77 0.70 0.20 0.47 
Louisiana 0.65 0.83 0.64 0.21 0.48 
Maine 0.77 0.86 0.77 0.14 0.44 
Maryland 0.69 0.75 0.69 0.22 0.44 
Massachusetts 0.63 0.70 0.63 0.21 0.48 
Michigan 0.68 0.90 0.68 0.21 0.45 
Minnesota 0.69 0.92 0.68 0.19 0.44 
Mississippi 0.82 0.85 0.81 0.19 0.47 
Missouri 0.77 0.90 0.76 0.20 0.46 
Montana 0.83 0.96 0.85 0.14 0.44 
Nebraska 0.67 0.85 0.66 0.18 0.43 
Nevada 0.85 0.97 0.85 0.22 0.45 
New Hampshire 0.63 0.85 0.61 0.14 0.43 
New Jersey 0.61 0.73 0.60 0.23 0.46 
New Mexico 0.80 0.97 0.81 0.23 0.46 
New York 0.59 0.82 0.58 0.29 0.50 
North Carolina 0.79 0.81 0.78 0.21 0.46 
North Dakota 0.77 0.94 0.79 0.13 0.43 
Ohio 0.59 0.68 0.58 0.20 0.45 
Oklahoma 0.76 0.88 0.75 0.20 0.45 
Oregon 0.64 0.95 0.64 0.18 0.45 
Pennsylvania 0.59 0.70 0.58 0.22 0.46 
Rhode Island 0.32 0.38 0.34 0.20 0.47 
South Carolina 0.71 0.72 0.70 0.21 0.46 
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South Dakota 0.86 0.92 0.87 0.17 0.44 
Tennessee 0.67 0.75 0.66 0.22 0.47 
Texas 0.75 0.93 0.75 0.28 0.47 
Utah 0.58 0.97 0.57 0.17 0.42 
Vermont 0.84 0.87 0.86 0.13 0.44 
Virginia 0.85 0.88 0.85 0.24 0.46 
Washington 0.72 0.91 0.73 0.21 0.44 
West Virginia 0.76 0.83 0.75 0.15 0.45 
Wisconsin 0.65 0.80 0.65 0.17 0.43 
Wyoming 0.78 0.93 0.82 0.13 0.42 
National 0.76 0.93 0.76 0.25 0.47 
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Table A.2: Generalized entropy measures of exposure inequality 
   

 
Theil index GE(2) 

Alabama 1.05 1.80 
Alaska 2.34 9.84 
Arizona 1.27 3.37 
Arkansas 1.43 3.29 
California 1.30 2.25 
Colorado 0.98 1.85 
Connecticut 0.73 1.23 
Delaware 0.43 0.62 
DC 0.33 0.85 
Florida 1.18 3.77 
Georgia 1.09 2.80 
Hawaii 0.53 0.76 
Idaho 1.52 4.05 
Illinois 0.62 0.74 
Indiana 0.80 1.24 
Iowa 1.48 3.19 
Kansas 1.06 1.36 
Kentucky 0.94 1.33 
Louisiana 0.75 0.84 
Maine 1.40 5.91 
Maryland 1.14 4.51 
Massachusetts 0.93 2.69 
Michigan 0.89 1.42 
Minnesota 0.92 1.48 
Mississippi 1.53 3.79 
Missouri 1.29 2.50 
Montana 1.54 3.42 
Nebraska 1.02 2.82 
Nevada 2.03 10.50 
New Hampshire 0.95 3.29 
New Jersey 0.70 1.08 
New Mexico 1.61 11.12 
New York 0.73 1.54 
North Carolina 1.58 5.83 
North Dakota 1.21 2.11 
Ohio 0.61 0.76 
Oklahoma 1.21 2.60 
Oregon 0.75 0.83 
Pennsylvania 0.63 0.85 
Rhode Island 0.17 0.20 
South Carolina 0.98 1.64 
South Dakota 1.83 5.79 
Tennessee 0.90 1.67 
Texas 1.11 1.61 
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Utah 0.61 0.65 
Vermont 1.68 4.53 
Virginia 1.78 5.26 
Washington 1.17 3.39 
West Virginia 1.11 1.53 
Wisconsin 0.77 1.11 
Wyoming 1.24 2.03 
National 1.16 1.98 
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Table A.3: Horizontal measures of exposure inequality 

 

 

Minority/white 
median exposure 

ratio 
 

Minority/white 
p90 exposure 

ratio 
 

Poor/nonpoor 
median exposure 

ratio 
 

Poor/nonpoor  
p90 exposure 

ratio 
 

Alabama 0.94 1.38 0.86 1.28 
Alaska 1.00 0.73 0.89 0.77 
Arizona 1.10 1.03 1.07 1.26 
Arkansas 3.24 3.34 1.02 1.77 
California 3.48 1.79 1.25 0.96 
Colorado 1.76 1.35 1.32 1.34 
Connecticut 1.06 1.36 1.17 1.62 
Delaware 1.36 1.26 1.07 0.89 
DC 1.13 1.07 0.96 0.94 
Florida 1.88 1.81 1.19 1.22 
Georgia 1.89 2.05 0.94 1.48 
Hawaii 2.02 1.41 1.12 0.94 
Idaho 1.05 1.77 0.35 1.45 
Illinois 2.92 2.33 1.73 1.67 
Indiana 2.01 1.35 1.36 1.59 
Iowa 1.22 1.30 1.19 1.47 
Kansas 2.20 1.29 0.57 1.25 
Kentucky 3.66 2.72 0.50 1.74 
Louisiana 1.76 1.24 0.84 1.06 
Maine 1.45 1.23 0.95 1.07 
Maryland 0.67 0.55 1.80 1.26 
Massachusetts 1.05 1.13 1.10 1.16 
Michigan 3.10 1.60 1.28 1.29 
Minnesota 4.59 1.28 1.12 1.18 
Mississippi 0.85 1.13 0.76 1.14 
Missouri 2.48 0.84 1.52 2.08 
Montana 0.46 0.67 0.92 1.07 
Nebraska 2.07 1.29 1.16 1.00 
Nevada 0.78 0.66 0.95 0.87 
New Hampshire 2.15 0.94 0.95 0.93 
New Jersey 2.05 1.56 1.25 1.30 
New Mexico 1.03 1.90 0.81 1.73 
New York 2.41 0.95 1.54 1.08 
North Carolina 1.06 1.23 0.93 1.19 
North Dakota 0.03 0.85 0.94 1.16 
Ohio 2.20 1.71 1.48 1.68 
Oklahoma 1.81 1.73 0.58 1.33 
Oregon 1.61 0.94 0.72 0.81 
Pennsylvania 0.98 1.32 0.91 1.55 
Rhode Island 0.97 0.94 1.06 0.97 
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South Carolina 1.03 0.95 0.78 0.74 
South Dakota 0.23 0.99 0.43 1.18 
Tennessee 2.56 1.53 1.17 1.26 
Texas 1.19 1.76 0.82 1.24 
Utah 1.42 1.28 0.73 1.25 
Vermont 1.14 1.00 1.00 1.50 
Virginia 1.11 0.68 3.17 3.06 
Washington 1.15 0.78 1.00 1.27 
West Virginia 0.80 1.32 0.74 0.96 
Wisconsin 4.79 1.97 1.55 1.51 
Wyoming 2.09 1.75 3.59 1.75 
National 1.46 1.41 1.11 1.33 
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Supplementary Table: Median and p90 exposure by state 
 

 

Median exposure 
 

p90 exposure 
 

Alabama 815.33 8925.47 
Alaska 12.49 537.49 
Arizona 331.61 2565.33 
Arkansas 269.70 3994.63 
California 275.23 8074.69 
Colorado 324.45 2781.23 
Connecticut 1680.44 7154.22 
Delaware 1022.00 2420.24 
DC 112.60 190.93 
Florida 124.58 565.97 
Georgia 638.59 2924.27 
Hawaii 297.34 964.82 
Idaho 257.17 2496.34 
Illinois 3633.57 22293.81 
Indiana 1558.14 11466.58 
Iowa 251.68 4691.29 
Kansas 1023.45 25177.27 
Kentucky 1187.81 14355.20 
Louisiana 2581.43 28294.13 
Maine 99.01 1021.72 
Maryland 163.73 1030.89 
Massachusetts 462.68 2047.64 
Michigan 1292.35 8164.81 
Minnesota 832.43 5732.74 
Mississippi 341.85 2991.40 
Missouri 772.55 6370.12 
Montana 78.03 3770.60 
Nebraska 529.72 1599.41 
Nevada 48.59 521.63 
New Hampshire 175.10 741.68 
New Jersey 2328.42 8388.56 
New Mexico 20.67 199.13 
New York 1137.93 2810.47 
North Carolina 171.75 885.71 
North Dakota 25.88 686.66 
Ohio 3148.11 20340.46 
Oklahoma 553.12 4111.01 
Oregon 2938.53 20625.23 
Pennsylvania 2786.53 16300.13 
Rhode Island 195.10 395.72 
South Carolina 1010.19 8445.30 
South Dakota 67.07 836.94 
Tennessee 1149.95 5367.40 
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Texas 702.60 14826.53 
Utah 4934.29 21128.02 
Vermont 4.78 76.63 
Virginia 119.07 1727.94 
Washington 270.76 1982.40 
West Virginia 569.95 16835.39 
Wisconsin 1237.28 9152.23 
Wyoming 93.51 1995.35 
National 594.92 7973.67 
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