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Abstract

Using data on industrial air pollution exposure in the United States, we compute
three measures of environmental inequality at the national level and for the 50
states: the Gini coefficient of exposure, the ratio of median exposure of people of
color to that of non-Hispanic whites, and the ratio of median exposure of poor
households to that of nonpoor households. Comparing Gini coefficients of pollution
exposure to those of income, we find that the distribution of pollution exposure is
more unequal. Comparing the three measures of environmental inequality, we find
that rankings across states vary considerably, and conclude that different measures
are most appropriate depending on whether the policy concern is equal fulfillment
of the intrinsic right to a clean and safe environment or interactions between
environmental inequality and other socioeconomic disparities.
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1. Introduction

Pollution in the United States is not an equal opportunity affair. A large body of
research has established that racial and ethnic minorities and low-income
households tend to face higher pollution burdens than non-Hispanic whites and
higher-income households (see, for example, Szasz and Meuser, 1997; Ash and
Fetter, 2004; Mohai, 2008; Bullard et al. 2011). However, patterns of environmental
inequality have been found to vary substantially across regions and metropolitan
areas (Zwickl et al., 2014; Downey 2007).

This paper computes and compares three measures of environmental inequality for
the 50 U.S. states, using data on exposure to industrial air toxics from the Risk-
Screening Environmental Indicators (RSEI) of the U.S. Environmental Protection
Agency (EPA): (i) the Gini coefficient of exposure; (ii) the ratio of the median
exposure of minorities to that of non-Hispanic whites; and (iii) the ratio of the
median exposure of poor households to that of nonpoor households. Our primary
aims are to demonstrate that variations in environmental quality are measurable; to
assess its magnitude relative, for example, to income inequality; and to examine the
extent to which the different measures are correlated with each other, since a high
correlation would imply that policy concerns can be addressed relying on a single
measure, whereas a low correlation would imply that different measures are needed
for different purposes.

The Gini coefficient is a measure of vertical inequality. It differentiates the
population only by the variable in question, in the present case exposure to
industrial air toxics, and it summarizes the extent of divergence from a perfectly
equal distribution. The other two measures refer to horizontal inequality,
comparing differences in exposure across population subgroups that are
differentiated on some basis (here minority status and poverty status) other than
exposure itself.

We find that exposure inequality rankings vary considerably across these three
measures. Because environmental inequalities are likely to be of greatest policy
concern in places with high overall pollution burdens, we identify the states that
rank in the top half in terms of both median exposure to industrial air pollution and
one or more measures of exposure inequality.

Section 2 discusses motivations for measuring environmental inequality - why
policy makers and the public may be concerned about the distribution of



environmental harm as well as its overall magnitude. Section 3 introduces the data
used in our analysis, and section 4 provides details on methods used to calculate the
three measures. Section 5 presents results for the states. Section 6 offers some
concluding remarks.

2. Environmental quality and environmental inequality

Environmental inequality matters for at least three reasons. The first reason is an
intrinsic one, founded on the normative principle that all persons have an equal
right to a clean and safe environment. The second reason is that the distribution of
environmental quality has important impacts on opportunities to lead a healthy and
productive life. The third reason, related to the second, is that the distribution of
environmental quality has important impacts on economic outcomes for individuals
and communities. In this section we discuss these rationales with a particular focus
on air pollution, which the World Health Organization (2014) has characterized as
"the world's largest single environmental health risk," currently responsible for one
in eight of total deaths worldwide.

(i) Intrinsic value of environmental equity

The normative principle that every person has the right to a clean and safe
environment is widely asserted in the most fundamental of legal documents,
national constitutions. The post-apartheid constitution of the Republic of South
Africa declares, for example, “Every person shall have the right to an environment
which is not detrimental to his or her health or well-being.”# Similar language can be
found in many U.S. state constitutions, as illustrated by this statement in the
constitution of the Commonwealth of Massachusetts: “The people shall have the
right to clean air and water.”>

4 Similar statements appear in the constitutions of many nations across the world. For example: “All
residents enjoy the right to a healthy, balanced environment” (Argentina); “Every person shall have
the right to a wholesome environment” (Belarus); “All citizens shall have the right to a healthy and
pleasant environment” (Republic of Korea); “Everyone shall have the right to a healthy and
ecologically balanced human environment and the duty to defend it” (Portugal). For discussion of
international legal principles on environmental human rights, see Popovic (1996).

5 Other examples from state constitutions include the following: “The people have a right to clean air,
pure water, and the preservation of the natural, scenic, historic and esthetic values of the
environment” (Pennsylvania); “All persons are born free and have certain inalienable rights. They
include the right to a clean and healthful environment” (Montana); “Each person has the right to a
clean and healthful environment” (Hawaii).



These fundamental legal principles accord an intrinsic value to the distribution of
environmental quality. A logical corollary of the principle that all persons have an
equal right to a clean and safe environment is that shortfalls in environmental
quality likewise should be distributed equally. The environmental rights of some
should not take precedence over the environmental rights of others.

The intrinsic value of environmental equity applies to the distribution of
environmental quality across communities as well as individuals. The
environmental justice movement in the U.S. has drawn attention to the
disproportionate environmental burdens often imposed on racial and ethnic
minorities and low-income people. Presidential Executive Order 12898, issued by
Bill Clinton in 1994, directed all U.S. government agencies to take steps to identify
and rectify “disproportionately high and adverse human health or environmental
effects of its programs, policies, and activities on minority populations and low-
income populations,” inscribing environmental equity into federal policy. In a
proclamation marking the order's 20t anniversary, President Barack Obama
affirmed “every American's right to breathe freely, drink clean water, and live on
uncontaminated land” (Obama, 2014).

To be sure, equity is not all that matters when it comes to environmental quality. A
situation in which all people are equally exposed to unacceptably high levels of
pollution is arguably inferior than one in which some are exposed to that level and
others to lower levels. For any given level of overall pollution exposure, however, a
more equal distribution can be regarded as ethically and legally superior to a less
equal distribution.

(ii) Equality of opportunity

A second reason for concern about environmental inequalities derives from their
implications for equality of opportunity, owing to the vulnerability of children to
environmental harm. “Much more important than inequality of outcomes among
adults is inequality of opportunity among children,” assert the authors of the World
Bank’s Human Opportunity Index, reflecting a widely held view. “The debate should
not be about equality (equal rewards for all) but about equity (equal chances for
all), because the idea of giving people equal opportunity early in life, whatever their
socioeconomic background, is embraced across the political spectrum” (Barros et
al., 2009, p. xvii).



Children are especially susceptible to health and cognitive impacts of pollution, and
it has been shown that environmental quality can significantly affect a child’s life
chances (Currie, 2011). Indeed the impacts extend to the odds of life itself. The
reduction in air pollution in the U.S. due to the impact of the 1981-82 recession on
economic activity led to a measureable reduction in infant deaths: Chay and
Greenstone (2003) found that each one percent decrease in total suspended
particulates lowered infant mortality by 0.35 percent. Reductions in carbon
monoxide exposure attributable to emissions controls implemented in California in
the 1990s are estimated to have prevented approximately 1000 infant deaths
(Currie and Neidell, 2005).

Even relatively modest levels of air pollution have been found to have significant
adverse impacts on fetal health as well as infant health (Currie et al, 2009). The link
between maternal air pollution exposure during pregnancy and fetal growth has led
researchers to conclude that “a substantial proportion of cases of low birthweight at
term could be prevented in Europe if urban air pollution was reduced” (Pedersen et
al, 2013). Fetal exposure to industrial chemicals is also linked to
neurodevelopmental disabilities including autism, attention-deficit hyperactivity
disorder, dyslexia and other cognitive impairments (Grandjean and Landrigan,
2014). Even transitory exposure to high levels of airborne particulates on the day of
the exam has been shown to have significant adverse impacts on student
performance of high-stakes tests, leading in turn to negative effects on post-
secondary education and adult earnings (Lavy et al., 2014).

In addition to neurological impacts, air pollution affects children's educational
opportunities by causing school absences due to illness. A study of elementary and
middle school children in Texas found that air pollution had significant adverse effects
on school attendance, controlling for characteristics of schools, years and attendance
periods (Currie et al, 2009). A Michigan study found that schools located in
neighborhoods with the highest industrial air pollution levels had the lowest
attendance rates and the highest proportions of students who failed to meet state
educational testing standards, after controlling for effects of confounding variables
such as average expenditure per student, size of the student body, student-teacher
ratio, and percentage of students enrolled in the free lunch program (Mohai et al,
2011). Exposure to airborne toxics has been found to have a statistically significant
negative effect on academic test scores in metropolitan Los Angeles, after controlling
for other socioeconomic predictors of school performance (Pastor et al, 2002, 2004).
Similarly, a study in East Baton Rouge, Louisiana, found that proximity to Toxics



Release Inventory (TRI) facilities and high-volume emitters of developmental
neurotoxins is significantly related to school performance (Lucier et al., 2011).

(iii) Economic impacts

Pollution also has impacts on economic outcomes, including property values, days
lost from work, and health costs. Air pollution has long been known to reduce
property values (Nourse, 1967; Anderson and Crocker, 1971). Reductions in total
suspended particulates following implementation of the Clean Air Act are estimated
to have led to a $45 billion increase in housing values in the 1970s (Chay and
Greenstone, 2005). Housing values within a one-mile radius of TRI facilities have
been found to decrease by 1.5% when a plant opens and to increase by 1.5% when
one closes (Currie et al, 2015).

Air pollution also results in lost work days. An analysis of 1976 U.S. household
survey data found that one standard deviation increase in ambient particulate
pollution was associated with a 10 percent increase in days lost to illness (Hausman
et al, 1984). A 12.8% increase in exposure to sulfates in U.S. metropolitan areas in
1979-1981 was associated with 4800 extra days of respiratory-related restrictions
per 100,000 work days (Ostro, 1990). Air pollution has also been shown to have
statistically significant adverse impacts on worker productivity (Graff Zivin and
Neidell, 2011).

Following the publication in 1981 of the landmark report, Costs of Environment-
Related Health Effects, written by an expert committee of the U.S. Institute of
Medicine chaired by economist Kenneth Arrow, a number of studies have estimated
the monetary costs of the “environmentally attributable fraction” (EAF) of diseases
in the U.S. The annual cost of EAF illnesses among children was calculated by
Landrigan et al. (2002) to be $54.9 billion in 1997 dollars, with the largest single
component coming from lifetime productivity losses attributable to early exposure
to neurotoxins. Updated estimates by Transande and Liu (2011) put the annual cost
at $76.6 billion in 2008 dollars. Recent research on childhood asthma suggests that
prior studies have underestimated the health costs of air pollution by measuring
only the exacerbation of asthma and not impacts on their prevalence (Brandt et al,
2012).

In December 2011 the U.S. EPA announced Mercury and Air Toxics Standards, the
agency'’s first effort to impose mandatory limits on air toxics. The EPA estimates that
the standards will yield annual health benefits valued at between $37 billion and



$90 billion, including prevention of as many as 11,000 premature deaths and
130,000 asthma attacks per year, and notes that these benefits are “especially
important to minority and low income populations who are disproportionately
impacted by asthma and other debilitating health conditions” (EPA, 2014). The
standards, which were upheld by a federal appeals court in April 2014, apply only to
power plants - a subset of the industrial facilities whose air toxics releases are the
basis for the exposure data used in the present study.

The distribution of environmental quality may contribute the widely observed
inverse relationship between health and socioeconomic status (Evans and
Kantrowitz, 2002). A study of Bronx borough in New York City found that poor and
minority populations are more likely to live in proximity to noxious land uses,
including TRI facilities, and that this is associated with a 66% increase in the
likelihood of hospitalization for asthma (Maantay, 2007). Interactions among
environmental hazards and social vulnerability exacerbate health impacts in
minority and low-income neighborhoods (Morello-Frosch et al, 2011). Exposure to
multiple hazards has cumulative impacts (Brender et al, 2011).

Whether adverse impacts of pollution exposure could, in principle, be
“compensated” by the provision of other amenities is a matter of debate. It has been
argued, for example, that individuals may be willing to tradeoff environmental
quality for income, and hence that people living in more polluted locations who have
higher incomes than those in less polluted locations may be no worse off (Millimet
and Slottje, 2002). If access to a clean and safe environment is regarded as an
intrinsic right, one can question whether income could adequately compensate for
its infringement, on ethical grounds that are analogous to the prohibitions against
slavery and trafficking in human organs, namely that human rights cannot be sold.
This debate is irrelevant, however, insofar as environmental inequalities mirror
disparities in socioeconomic status, rather than operating in the reverse direction.

3. Mapping exposure to industrial air toxics in the United States

To measure industrial air toxics exposure we use geographic microdata from the
EPA’s Risk Screening Environmental Indicators (RSEI ver. 2.3.1) model for the year
2010. The RSEI model covers air releases of more than 400 chemicals from more
than 15,000 industrial facilities that are required to report to the Toxics Release
Inventory (TRI). RSEI models the dispersion of these releases in the environment,
incorporating information on stack heights, exit gas velocities, wind patterns, and
chemical decay rates to estimate ambient concentrations in grid cells, each 810



meters square, in a 50-km radius around each facility. To aggregate across
chemicals, RSEI uses toxicity weights based on chronic human health effects from
inhalation exposure.

The RSEI data provide the best available measure of exposure to air toxics from
industrial facilities, but they only capture one component of overall air pollution.
The data do not include pollution from mobile sources or from small point sources
such as dry cleaning establishments. The industrial point sources in the TRI/RSEI
database often loom large, however, in the risks faced by communities with the
most severe air pollution (Boyce and Pastor, 2012).

Figure 1 maps median exposure to industrial air toxics by state - that is, the
exposure of households at the midpoint of the frequency distribution in their
respective states. There are wide interstate variations: the highest median exposure
(Utah) is roughly one thousand times greater than the lowest (Vermont).

[insert Figure 1 here]

Here, however, our main focus is the distribution of exposure within states. To
examine intra-state variations, we use RSEI geographic microdata to calculate
toxicity-weighted exposures for each of the state's RSEI grid cells, aggregated across
all industrial facilities that impact the cell. We then map the grid-cell exposures to
census blocks, the finest level of geographic resolution in the U.S. Census. We obtain
income and demographic variables at the census tract level from the American
Community Survey (ACS), using five-year averages for the years 2006-2010. To
merge these data, we compute exposure at the census tract level as the area-
weighted average of exposure in the tract’s constituent blocks.®

Figure 2 maps nationwide variation in exposure to industrial air toxics by census
tracts. The uneven distribution of exposure is evident within states as well as across
them. A number of states include tracts in both the highest and lowest national
exposure quintiles, indicating the presence of substantial intra-state exposure
inequalities as well as illustrating the importance of spatial disaggregation.

[insert Figure 2 here]

6 We censor pollution exposure at the nationwide population-weighted 97th percentile (that is, we
cap exposure at this value) to reduce the sensitivity of our results to outliers.



4. Three measures of environmental inequality

We compute three measures of environmental inequality from the RSEI data on
exposure to industrial air toxics:

(i) Gini coefficient

The Gini coefficient is a measure of vertical inequality, meaning that individuals are
differentiated only by the variable in question (in this case, pollution exposure), and
the measure summarizes the extent of these differences. It is widely used to
measure inequality in the distribution of income, expenditure and wealth (Dorfman,
1979). The Gini coefficient occasionally has been applied to environmental
variables, including carbon emissions (Heil and Wodon, 2000), resource use
(Druckman and Jackson, 2008), and industrial air toxics exposure in the state of
Maine (Bouvier 2014).

In the measurement of disparities in income and wealth, the unit of observation is
typically the individual or family. When calculating Ginis for spatially based
variables, such as pollution exposure, the unit of observation is less straightforward.
To minimize the problem of "ecological fallacy," in which conclusions drawn from
aggregate spatial data do not apply at a finer level of disaggregation (Ash and Fetter,
2004), it is desirable to base calculations on the smallest unit of observation that is
available, in our case 810 meter x 810 meter grid cells. There are almost 15 million
grid cells nationwide, 9.7 million of which have exposure to industrial air pollution
as estimated by the RSEI). Although grid cells have a fixed area, population density
varies greatly across them. Alternatively we can compute Ginis at the census tract
level. Tracts are constructed by the US Census Bureau to include around 4000
individuals each,” but they vary widely in area due to differences in population
density. The United States consists of 74,002 census tracts, so grid cells generally
provide a finer spatial resolution. In densely populated urban areas, however, tracts
can be much smaller than grid cells. Nationwide the number of grid cells per tract
ranges from 0.06-0.07 cells per tract in parts of New York City and Boston to tens of
thousands of cells per tract in parts of western states such as Alaska, Nevada, and
Wyoming.

Whether it is more appropriate, in assessing environmental inequalities, to partition
the country into spatial units by equal area or equal population is an important

7 Since not every tract includes exactly 4000 individuals, we will additionally population weight the census
tract Ginis to account for the remaining variation in population size by unit of observation.



question from the standpoint of environmental policy as well as measurement
methodology. Inequality across grid cells of equal area can be reduced by targeting
the most polluted grid cells first. The underlying normative premise for such a
policy is that every resident, regardless of geographic location, should have equal
access to environmental quality; less densely populated areas should not be more
polluted, simply because fewer people are affected. Inequality across census tracts
of roughly equal population gives more weight to locations with higher population
density; the underlying premise is environmental priorities should reflect the
number of people who will benefit from environmental regulation and enforcement.
This approach is reflected in conventional cost-benefit analyses that show higher
benefits when more people are affected by improved environmental quality.

Population weights can also be used in calculating Ginis from grid cell-level data.
Because grid cells generally are smaller than tracts, a comparison between tract-
based Ginis and population-weighted grid cell-based Ginis can shed light on how
much inequality arises from within-tract variations. In the case of income inequality,
calculations based on tract-level data versus household-level data show that a
substantial part of overall inequality is attributable to within-tract variations
(Galbraith and Hale, 2008). In the case of location-based variables such as pollution
exposure, however, within-tract variations are likely to be less important. This
expectation is confirmed by the results presented in the next section of this paper.

Because the census tract is the finest level of disaggregation available for the
income, race and ethnicity variables used in our measures of horizontal inequality,
the tract-based Gini is most directly comparable to these other measures of
exposure inequality. Moreover, insofar as census tracts roughly correspond to what
residents consider to be their "neighborhoods," this measure of inequality is of
intrinsic interest.8

The Gini coefficient is calculated by the following formula:

n n

Gini = (1/n)[n +1- 2321 (n + 1 - i) EXPOSURE,] /i1 EXPOSURE;

8 Census tracts have been used as proxies for neighborhoods not only in analyzing environmental
disparities (see, for example, Zwickl and Moser, 2014), but also in analyzing housing markets and
segregation (Brueckner and Rosenthal, 2009), unemployment (Topa, 2001), and subprime lending
(Richter and Craig, 2013).
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where EXPOSURE; = industrial air toxics exposure in census tract (or cell) i, and n =
the number of tracts (or cells), indexed in non-decreasing order (EXPOSURE; <
EXPOSURE;:; ). The Gini coefficient lies between the hypothetical values of zero
(which would mean that all tracts or cells have the same exposure) and one (which
would mean that exposure is confined entirely to a single tract or cell).

(ii) Minority/white exposure ratio

Our other two measures refer to horizontal inequality, also known as group
inequality. These measures compare exposure across subgroups of the population
that are differentiated by attributes other than exposure itself. To compare exposure
of racial and ethnic minorities to that of non-Hispanic whites (hereafter, simply
“whites”), we calculate exposure levels for both subgroups:

EXPOSURE;s = Ss(EXPOSURE; * TOTALPOPy * Xj)/ Ss(TOTALPOP: *Xji) ~ (2)

where subscript j indexes the population subgroup; the subscript s indexes the
state; and Xjx is the share of subgroup j in the population of census tract k.

We then calculate the ratio of the median exposures for the minority and white
population subgroups in the state, and term this the “minority/white exposure
ratio.”

(iii) Poor/nonpoor exposure ratio

Using the same technique, we measure horizontal inequality in the distribution of
exposure between poor households (here defined as having incomes below the
federal poverty line) and nonpoor households. The “poor/nonpoor exposure ratio”
is the ratio of the median exposures of the poor and nonpoor population subgroups
within the state.

5. Results

We compute these three measures of inequality in exposure to industrial air toxics
for the 50 states plus the District of Columbia. Comparisons of environmental
inequalities across states are of interest since states vary not only in the strength of
their environmental regulations and enforcement but also in the extent to which
their environmental policies explicitly include distributional objectives (Bonorris,
2010).

11



Vertical inequality: Gini coefficients

Table 1 reports three variants of the environmental Gini - one based on tract-level
data, the other two based on grid cell data without and with population weighting.
At the national level, the between-tract Gini is 0.76, and it is 0.70 or higher in 29 of
the 50 states. The between-cell Gini without population weights is 0.93 at the
national level, and higher than the between-tract Ginis in almost every state. With
population weighting, however, the between-cell Ginis are nearly identical to the
between-tract Ginis. This implies that the difference between the tract-based Gini
reported in column 1 and the cell-based Gini reported in column 2 is primarily due
to the fact that the latter gives equal weight to all locations regardless of population
density, rather than to the difference in the degree of spatial resolution. In other
words, there is little intra-tract variation in exposure relative to between-tract
variation. If the logic behind population weighting is accepted, therefore, the choice
between tracts and cells as a basis for computing the exposure Gini is of little
consequence.

[insert Table 1 here]

To compare exposure inequality to income inequality, in the final two columns of
Table 1 we present income Ginis. Column 4 reports between-tract Ginis, calculated
on the basis of median tract income. Column 5 reports individual income Ginis
computed by the Census Bureau from household data from the 2010 ACS. In the
case of income inequality, we find a marked difference between these two
measures: the national between-tract income Gini is 0.25 compared to an individual
income Gini of 0.47, and at the state level the differences generally are even larger.
This reflects substantial intra-tract variation in household income, a finding earlier
reported by Galbraith and Hale (2008) using data for the year 2000.

At the national level, the Gini coefficient for between-tract and between-cell
(population-weighted) exposure inequality is 0.76, compared to 0.25 for between-
tract income inequality and 0.47 for individual income inequality. At the state level,
between-tract exposure inequality is higher than between-tract income inequality in
every case, and higher than the individual income Gini in all but two. We can safely
conclude, therefore, that exposure to industrial air toxics in the United States is
distributed more unequally than income.

12



Horizontal inequality: median exposure ratios

Table 2 presents our two horizontal measures of exposure inequality, alongside the
between-tract Gini coefficient for ease of comparison. The minority/white exposure
ratio is 1.46 nationwide. By this measure, exposure inequality and income inequality
are roughly comparable in magnitude: in 2010 the ratio of median white household
income to median minority household income was 1.4.° The fact that minorities
tend to have both higher exposure and lower income suggests that disproportionate
pollution burdens often are not offset by higher incomes. The minority/white
exposure ratio is less than one in only ten states, and less than 0.67 only in the
Dakotas and Montana, where Native Americans, many of whom reside far from
industrial facilities, comprise the largest minority group. It exceeds 3.0 in six states:
Arkansas, California, Kentucky, Michigan, Minnesota and Wisconsin.

[insert Table 2 here]

The poor/nonpoor exposure ratio nationwide is 1.11, ranging from 0.35 in Idaho to
3.59 in Wyoming. This measure reflects the net balance between two opposing
effects. On the one hand, if the presence of industry is correlated with higher
incomes as well as more pollution, the exposure of the poor would be expected to be
lower than the exposure of the nonpoor, producing a ratio less than one. On the
other hand, if more polluting facilities are more likely to be located in low-income
neighborhoods, this would yield a ratio greater than one. The ratio is greater than
one in 26 states - and greater than 3.0 in two, Virginia and Wyoming - again
implying that in many cases higher pollution exposure is not compensated by higher
incomes.

Table 3 reports correlation coefficients among the three measures of environmental
inequality. The correlations are low, implying that rankings are highly sensitive to
the choice of exposure inequality measure. The correlation between the two
horizontal inequality measures - the minority/white ratio and the poor/nonpoor
ratio - is positive, as one would expect given higher poverty rates among minorities,
but the fact that it is low (0.185) implies that disproportionate exposure of the poor
is not simply an artifact of correlations between race, ethnicity and class.

[insert Table 3 here]

9 Calculated from DeNavas-Walt et al. (2011), Table A-1, "Income and Earnings Summary Measures
by Selected Characteristics: 2007 and 2010."
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The correlations between the Gini coefficient and the two horizontal inequality
measures are negative, albeit again quite low. A priori, one might have expected
states with more vertical inequality generally to exhibit more horizontal inequality,
too. To illustrate how the contrary can be true, Figure 3 shows percentile-wise
exposures for minorities and whites in two states, one (Ohio) with a relatively low
Gini but a relatively high minority/white ratio, and the other (Virginia) with the
opposite. The contrast between the two states underscores our finding that no
single measure suffices to capture the multiple dimensions of exposure inequality.10

[insert Figure 3 here]
Inequality and median exposure

The final column in Table 2 presents median exposure levels in the states, which
vary considerably as noted above. The relationship between median exposure and
exposure inequality is not straightforward. There is a negative correlation (-0.49)
between the between-tract exposure Gini and median exposure (see Table 3),
indicating that industrial air pollution tends to be more unequally distributed in
states with less of it. This is not surprising, since some states (for example, Alaska
and Vermont) have low industrial air pollution exposure in many tracts and
substantial exposure in a few. Yet other states (for example, Rhode Island and
Hawaii) with relatively low median exposure also have relatively low exposure
Ginis, as shown in Figure 4.

[insert Figure 4 here]

The positive correlation between the minority/white exposure ratio and median
exposure (0.23) implies that pollution tends to be somewhat more concentrated in
minority communities in states with higher levels of pollution. This is consistent
with the proposition that environmental justice can be “good for white folks,” as
well as for people of color, in that more equal distribution of exposure between
minorities and whites is associated with lower levels of pollution overall (Ash et al,
2013). This may reflect less stringent environmental regulation in states where

10 Two other features of Figure 3 deserve comment. First, more than 15% of Ohio’s minority
population lives in census tracts with industrial air toxics exposure at or above the 97th percentile
nationwide (the level at which the exposure data are censored, resulting in the flattening the curve).
Second, the most exposed decile of whites in Virginia faces considerably higher exposure than the
most exposed decile of minorities. As mentioned above, Virginia’s poor/nonpoor median exposure
ratio is among the highest in the nation; taken together, these observations reflect disproportionately
high exposures among poor whites in that state.
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pollution burdens fall more heavily on disadvantaged groups, or more vigorous
efforts to shift exposure burdens onto disadvantaged communities in states with
more pollution. That is, environmental justice may be linked to the overall
magnitude of pollution as both cause and effect.

From a policy standpoint, environmental inequalities are likely to be of greatest
concern in places where overall pollution levels are high. The maps in Figures 5-7
partition the states into four groups, based on whether their median exposure and
exposure inequality are above or below their average values for all states. Again we
see contrasts among the different measures. States with above-average median
exposure plus above-average exposure Ginis are concentrated in the south central
region, while those with above-average median exposure plus above-average
minority/white and poor/nonpoor exposure ratios are concentrated in the northern
Midwest.

[insert Figures 5-7 here]
6. Conclusion

Environmental inequality is a multi-dimensional phenomenon. In this study we
examined three measures that capture different dimensions: the Gini coefficient of
exposure, the median exposure of people of color relative to that of non-Hispanic
whites, and the median exposure of the poor relative to that of the nonpoor. The
first is a measure of vertical inequality, representing the degree of disparity across
the population ranked from least exposed to most exposed. The latter two are
measures of horizontal inequality, comparing exposure across groups defined on
the basis of minority status and poverty status, respectively.

When we compute these measures for the 50 U.S. states and the District of
Columbia, we find that they yield markedly different rankings of environmental
inequalities. We find only modest positive correlations between the two horizontal
inequality measures, and modest negative correlations between the Gini coefficient
and the horizontal measures.

Comparing exposure Ginis to income Ginis, we find that exposure to industrial air
pollution is more unequally distributed than income in the United States.
Nationwide, the exposure Gini is 0.76 when calculated either between tracts or
between cells weighted by population. This is considerably higher than either the
inter-tract income Gini (0.25) or the individual income Gini (0.47). When we

15



calculate the exposure Gini based on cells of equal area, without population weights,
inequality is even more extreme (0.93 at the national level).

There is no single answer to the question of which type of environmental inequality
should be of greatest policy interest and public concern. If we start from the
normative premise that every person has an equal right to environmental health
and safety, then vertical inequality is arguably most relevant as it measures the
extent to which the actual distribution of exposure violates this right. The extent to
which exposures exceed a level judged to be “safe” is important, too, and vertical
inequality is of most concern when absolute exposure levels are high. Yet even
where a state's median exposure is low, vertical inequality may be of interest,
indicating the extent to which summary measures mask more serious risks borne by
some communities.

Unequal distribution of exposure may be regarded as more objectionable when
those who bear disproportionate pollution burdens are disadvantaged in other
respects, as well. From this perspective, the extent of horizontal inequalities
between people of color and whites, and between the poor and nonpoor, is of
particular relevance. The explicit reference to “minority populations and low-
income populations” in Presidential Executive Order 12898 reflects this normative
principle.

To be sure, inequality is not the only useful criterion for assessing environmental
outcomes. Few would claim that social welfare would be improved by increasing
pollution in all census tracts until it equals that in the most exposed tract,
notwithstanding the fact that this would be one way to eliminate exposure
inequality. When the policy question is where to focus pollution abatement efforts
or where to site new pollution sources, however, environmental equity may be an
important objective. Pursuit of this objective runs counter to any tendency for
policymakers to concentrate environmental hazards in "sacrifice zones" that already
have high pollution burdens. Measures of environmental inequality not only can be
a useful input into policymaking, but also can help to catalyze greater attention
among scholars and members of the public to this issue.

Promising avenues for further research on measurement of environmental
inequality include the development of comparable measures for mobile-source air
pollution and for water pollution, and investigation as to whether variations in these
elements of environmental inequality are correlated with the variations in exposure
to industrial air toxics reported here. Measures can also be calculated for other
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spatial units, such as metropolitan areas or Congressional districts. In addition,
measurement of environmental inequality opens possibilities for analysis of how it
may be related, as both cause and effect, to other variables such residential
segregation, voting behavior, and state environmental policies.
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Figure 1: Median industrial air toxics exposure by state
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Figure 2: Industrial air toxics exposure by census tract
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Table 1: Exposure and income Ginis, 2010
Between-cell

Between-  Between-cell exposure Between-
tract exposure Gini, tract Individual
exposure Gini, population- income income

Gini unweighted weighted Gini Gini
Alabama 0.73 0.80 0.73 0.21 0.47
Alaska 0.91 1.00 0.92 0.17 0.42
Arizona 0.76 0.96 0.75 0.26 0.46
Arkansas 0.81 0.87 0.81 0.18 0.46
California 0.80 0.96 0.79 0.29 0.47
Colorado 0.71 0.95 0.71 0.22 0.46
Connecticut 0.61 0.60 0.60 0.25 0.49
Delaware 0.48 0.70 0.49 0.20 0.44
District of Columbia 0.34 0.38 0.35 0.33 0.53
Florida 0.72 0.78 0.71 0.24 0.47
Georgia 0.70 0.76 0.69 0.23 0.47
Hawaii 0.53 0.92 0.55 0.18 0.43
Idaho 0.81 0.97 0.81 0.16 0.43
Illinois 0.60 0.81 0.59 0.25 0.47
Indiana 0.65 0.73 0.65 0.18 0.44
Iowa 0.82 0.77 0.82 0.15 0.43
Kansas 0.74 0.91 0.73 0.21 0.45
Kentucky 0.71 0.77 0.70 0.20 0.47
Louisiana 0.65 0.83 0.64 0.21 0.48
Maine 0.77 0.86 0.77 0.14 0.44
Maryland 0.69 0.75 0.69 0.22 0.44
Massachusetts 0.63 0.70 0.63 0.21 0.48
Michigan 0.68 0.90 0.68 0.21 0.45
Minnesota 0.69 0.92 0.68 0.19 0.44
Mississippi 0.82 0.85 0.81 0.19 0.47
Missouri 0.77 0.90 0.76 0.20 0.46
Montana 0.83 0.96 0.85 0.14 0.44
Nebraska 0.67 0.85 0.66 0.18 0.43
Nevada 0.85 0.97 0.85 0.22 0.45
New Hampshire 0.63 0.85 0.61 0.14 0.43
New Jersey 0.61 0.73 0.60 0.23 0.46
New Mexico 0.80 0.97 0.81 0.23 0.46
New York 0.59 0.82 0.58 0.29 0.50
North Carolina 0.79 0.81 0.78 0.21 0.46
North Dakota 0.77 0.94 0.79 0.13 0.43
Ohio 0.59 0.68 0.58 0.20 0.45
Oklahoma 0.76 0.88 0.75 0.20 0.45
Oregon 0.64 0.95 0.64 0.18 0.45
Pennsylvania 0.59 0.70 0.58 0.22 0.46
Rhode Island 0.32 0.38 0.34 0.20 0.47
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South Carolina
South Dakota
Tennessee
Texas

Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
National

0.71
0.86
0.67
0.75
0.58
0.84
0.85
0.72
0.76
0.65
0.78
0.76

0.72
0.92
0.75
0.93
0.97
0.87
0.88
0.91
0.83
0.80
0.93
0.93

0.70
0.87
0.66
0.75
0.57
0.86
0.85
0.73
0.75
0.65
0.82
0.76

0.21
0.17
0.22
0.28
0.17
0.13
0.24
0.21
0.15
0.17
0.13
0.25

0.46
0.44
0.47
0.47
0.42
0.44
0.46
0.44
0.45
0.43
0.42
0.47
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Table 2: Three measures of environmental inequality

Minority/ Population-

Between-tract white exposure Poor/nonpoor  weighted median

exposure Gini ratio exposure ratio exposure
Alabama 0.73 0.94 0.86 815.33
Alaska 0.91 1.00 0.89 12.49
Arizona 0.76 1.10 1.07 331.61
Arkansas 0.81 3.24 1.02 269.70
California 0.80 3.48 1.25 275.23
Colorado 0.71 1.76 1.32 324.45
Connecticut 0.61 1.06 1.17 1680.44
Delaware 0.48 1.36 1.07 1022.00
District of Columbia 0.34 1.13 0.96 112.60
Florida 0.72 1.88 1.19 124.58
Georgia 0.70 1.89 0.94 638.59
Hawaii 0.53 2.02 1.12 297.34
Idaho 0.81 1.05 0.35 257.17
Ilinois 0.60 2.92 1.73 3633.57
Indiana 0.65 2.01 1.36 1558.14
Iowa 0.82 1.22 1.19 251.68
Kansas 0.74 2.20 0.57 1023.45
Kentucky 0.71 3.66 0.50 1187.81
Louisiana 0.65 1.76 0.84 2581.43
Maine 0.77 1.45 0.95 99.01
Maryland 0.69 0.67 1.80 163.73
Massachusetts 0.63 1.05 1.10 462.68
Michigan 0.68 3.10 1.28 1292.35
Minnesota 0.69 4.59 1.12 832.43
Mississippi 0.82 0.85 0.76 341.85
Missouri 0.77 2.48 1.52 772.55
Montana 0.83 0.46 0.92 78.03
Nebraska 0.67 2.07 1.16 529.72
Nevada 0.85 0.78 0.95 48.59
New Hampshire 0.63 2.15 0.95 175.10
New Jersey 0.61 2.05 1.25 2328.42
New Mexico 0.80 1.03 0.81 20.67
New York 0.59 2.41 1.54 1137.93
North Carolina 0.79 1.06 0.93 171.75
North Dakota 0.77 0.03 0.94 25.88
Ohio 0.59 2.20 1.48 3148.11
Oklahoma 0.76 1.81 0.58 553.12
Oregon 0.64 1.61 0.72 2938.53
Pennsylvania 0.59 0.98 0.91 2786.53
Rhode Island 0.32 0.97 1.06 195.10
South Carolina 0.71 1.03 0.78 1010.19
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South Dakota
Tennessee
Texas

Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
National

Between-tract exposure

Gini

Minority/white exposure

ratio

Poor/nonpoor exposure

ratio

Median exposure

0.86
0.67
0.75
0.58
0.84
0.85
0.72
0.76
0.65
0.78

0.76

Between-tract Minority/white Poor/nonpoor
exposure Gini exposure ratio exposure ratio

* Excluding Washington, DC.

0.23
2.56
1.19
1.42
1.14
1.11
1.15
0.80
4.79
2.09

1.46

Table 3: Correlations*

1.000

-0.199 1.000
-0.012 0.185
-0.491 0.228

0.43
1.17
0.82
0.73
1.00
3.17
1.00
0.74
1.55
3.59

1.11

1.000
-0.048

67.07
1149.95
702.60
4934.29
4.78
119.07
270.76
569.95
1237.28
93.51

594.92

Median
exposure

1.000
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Figure 3: Minority and white exposure by percentile: Ohio and Virginia
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Figure 6: Median exposure and minority/white ratio

Ml Above median exposure and above median ratio of minority exposure to white exposure
[ Above median exposure and below median ratio of minority exposure to white exposure
X Below median exposure and above median ratio of minority exposure to white exposure

L Below median exposure and below median ratio of minority exposure to white exposure
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Figure 7: Median exposure and poor/nonpoor ratio

B Above median exposure and above median ratio of poor exposure to nonpoor exposure
[J Above median exposure and below median ratio of poor exposure to nonpoor exposure
X Below median exposure and above median ratio of poor exposure to nonpoor exposure

[J Below median exposure and below median ratio of poor exposure to nonpoor exposure
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