Intra-Financial Lending, Credit, and Capital Formation

Juan Antonio Montecino and Gerald Epstein

University of Massachusetts Amherst

March 5, 2014

・ロト ・回ト ・ヨト ・ヨト

Thanks to ...

Institute for **New Economic Thinking**

イロン イヨン イヨン イヨン

Background and Data Motivation Data

Baseline Results VAR estimates Robustness tests

Extensions

Block Bootstrap Rolling VARs

・ロン ・回と ・ヨン ・ヨン

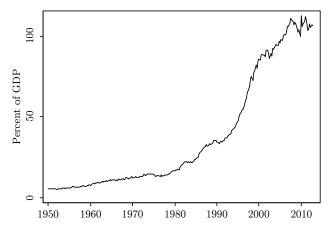
Motivation Data

Background and Data Motivation Data

Baseline Results VAR estimates Robustness tests

Extensions

Block Bootstrap Rolling VARs


Motivation Data

Background

- Vast expansion of the financial system...
- Intra-financial lending: banks lending to each other
- Since the 1980s, intra-financial assets as a share of total financial assets (IFA share) has increased dramatically
- What impacts has this had on the real economy?

Figure : Intra-Financial Assets as a percent of GDP

・ロト ・回ト ・ヨト ・ヨト

Motivation Data

3 perspectives

Potential impacts of increased IFA:

- 1. Financial efficiency view
 - Iower cost of capital
 - liquidity services
 - risk dispersal
 - higher credit and investment

- 4 回 2 - 4 □ 2 - 4 □

Motivation Data

3 perspectives

Potential impacts of increased IFA:

- 1. Financial efficiency view
 - Iower cost of capital
 - liquidity services
 - risk dispersal
 - higher credit and investment
- 2. Financial instability view
 - greater "interconnectedness" \longrightarrow risk concentration
 - higher leverage and financial fragility
 - increased credit during bubble phase but unsustainably

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Data

3 perspectives

Potential impacts of increased IFA:

- 1. Financial efficiency view
 - Iower cost of capital
 - liquidity services
 - risk dispersal
 - higher credit and investment
- 2. Financial instability view
 - greater "interconnectedness" \longrightarrow risk concentration
 - higher leverage and financial fragility
 - increased credit during bubble phase but unsustainably
- 3. Financial inefficiency / rent-extraction view
 - greater rent extraction along intermediation chain
 - capital is "diverted" away from investment in real sector
 - Iower credit and investment

イロン イヨン イヨン イヨン

Motivation Data

- Flow of Funds Accounts (FoF)
- The ideal would be to have micro-level data
- FoF is not meant to answer this kind of question
- Can't directly observe "network structure" of financial system
- But with a few (heroic) assumptions we can come up with some rough estimates

イロン イ部ン イヨン イヨン 三日

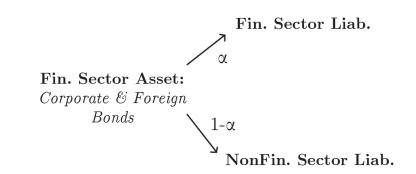
Motivation Data

What we can observe...

$$a_1 + a_2 = l_1 + l_2$$

where 1, 2 are different financial instruments (i.e. bonds, loans, etc.)

But we would like to observe...


$$a^f + a^n = l^f + l^n$$

where f, n denote the financial and non financial sectors, respectively

・ロン ・回 と ・ 回 と ・ 回 と

Motivation Data

イロン イヨン イヨン イヨン

Motivation Data

Methodology: calculating intra-financial lending

- Bhatia and Bayoumi (2012)
- Assume "fixed portfolio shares" for each instrument class
- In other words, assume financial sector claims on other financial institutions for each instrument reflect the sector's share of outstanding liabilities of that instrument
- That is,

 $\alpha_i = \frac{\text{financial sector liabilities}_i}{\text{total liabilities}_i}$

イロト イポト イラト イラト 一日

Motivation Data

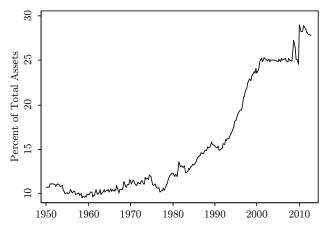
Methodology: calculating intra-financial lending

Once we calculate the share α_i, intra-financial assets for each instrument type are given by:

$$a_i^f = \alpha_i a_i$$

And total intra-financial assets are:

$$a^f = \sum_i \alpha_i a_i$$


Therefore, the IFA share is:

IFA share
$$=$$
 $\frac{a^f}{a}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Figure : Intra-Financial Asset Share

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

VAR estimates Robustness tests

Background and Data

Motivatio Data

Baseline Results VAR estimates Robustness tests

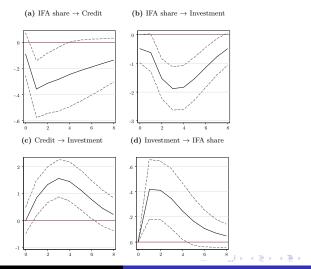
Extensions

Block Bootstrap Rolling VARs

VAR estimates Robustness tests

Methodology: VAR estimates

$$\mathbf{y}_t = \mathbf{C} + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} + \mathbf{u}_t \tag{1}$$


where

$$\mathbf{y}_{t} = \begin{bmatrix} \mathsf{IFA \ share} \\ \mathsf{Credit} \\ \mathsf{Investment} \end{bmatrix} \tag{2}$$

Juan Antonio Montecino and Gerald Epstein Intra-Financial Lending, Credit, and Capital Formation

VAR estimates Robustness tests

Figure : Orthogonalized impulse response functions

Juan Antonio Montecino and Gerald Epstein

Intra-Financial Lending, Credit, and Capital Formation

VAR estimates Robustness tests

Model assumptions violated...

- Null hypothesis of normally distributed residuals is rejected
- Serial correlation

・ロト ・回ト ・ヨト ・ヨト

VAR estimates Robustness tests

Robustness checks:

- Restricted sample (1950Q1-1999Q4)
- Additional lags
- Exogenous controls (NBER recession dummy, 3 month Treasury, corporate profit index)
- Main results not affected by robustness tests

イロン イヨン イヨン イヨン

Block Bootstrap Rolling VARs

Background and Data

Motivation Data

Baseline Results VAR estimates Robustness tests

Extensions

Block Bootstrap Rolling VARs

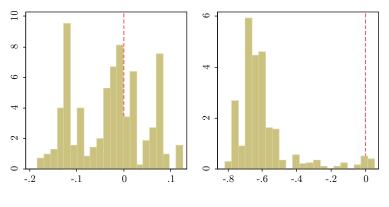
・ロト ・回ト ・ヨト ・ヨト

Block Bootstrap Rolling VARs

The Block Bootstrap

Solution: bootstrapping

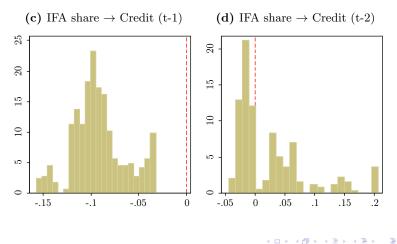
- Does not impose distributional assumption
- Time series data means traditional bootstrap not valid
- Need to preserve "time dependent" data structure
- Randomly draw "blocks" of contiguous observations


Main results are not affected by residual non-normality

- 4 同 6 4 日 6 4 日 6

Figure : Distribution of bootstrap point estimates

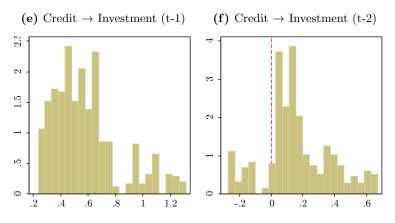
(a) IFA share \rightarrow Investment (t-1) (b) IFA share \rightarrow Investment (t-2)



イロン 不同と 不同と 不同と

Block Bootstrap Rolling VARs

Figure : Distribution of bootstrap point estimatest



Juan Antonio Montecino and Gerald Epstein Intra-Financial Lending, Credit, and Capital Formation

Block Bootstrap Rolling VARs

Figure : Distribution of bootstrap point estimates

イロン イヨン イヨン イヨン

Block Bootstrap Rolling VARs

Figure : Baseline model with block bootstrapped 95% C.I.

	(1) IFA			(2) Credit			(3) Investment		
VARIABLE	95		C.I.		95 C.I.			95 C.I.	
	Â	Lower	Upper	Â	Lower	Upper	Â	Lower	Upper
IFA (t-1)	0.580^{*}	0.518	0.678	-0.134*	-0.148	-0.036	-0.068	-0.148	0.090
IFA (t-2)	0.050	0.000	0.118	0.082	-0.033	0.204	-0.386*	-0.767	-0.027
Credit (t-1)	-0.250*	-0.686	-0.086	0.897*	0.858	1.045	0.642*	0.250	1.205
Credit (t-2)	0.268*	0.186	0.649	-0.134*	-0.198	-0.047	-0.162	-0.247	0.607
Investment (t-1)	0.107*	0.067	0.177	0.023	-0.018	0.033	0.899*	0.600	1.186
Investment (t-2)	-0.047	-0.156	0.018	0.004	-0.020	0.051	-0.202*	-0.379	-0.065
Constant	0.000	-0.001	0.001	0.000	-0.001	0.001	0.001	-0.002	0.002

Source: Authors' calculations.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

Block Bootstrap Rolling VARs

Rolling VARs

Parameter stability concerns

- Do the parameters vary significantly across time?
- How stable is the estimated relationship?
- Does intra-financial lending have different effects during different periods?

Rolling VAR

- Estimate VAR model over continuous sample "windows"
- Advance estimation window one "step" at a time Allows examination of how the effects evolve over time

・ロン ・回 と ・ ヨ と ・ ヨ と

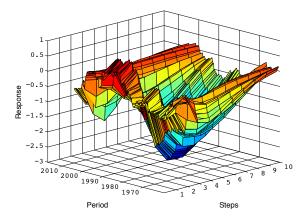
Block Bootstrap Rolling VARs

Consider a case with...

- Baseline 3 endogenous variable VAR model
- Window size: 80 observations (20 years at quarterly frequency)
- Step size: 1 period

イロン イヨン イヨン イヨン

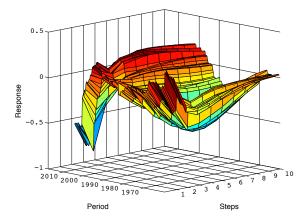
Block Bootstrap Rolling VARs


Results

- Data is consistent with both the financial inefficiency & financial instability views
- There are two "regimes"
- ► Capital diversion regime 1950 to 1995 & 2008 to 2012
 - ▶ \uparrow IFA share $\longrightarrow \downarrow$ credit $\longrightarrow \downarrow$ investment
- ▶ Bubble regime 1995 to 2008
 - IFA share and credit are complementary, but credit growth is probably unsustainable
 - \uparrow IFA share $\longrightarrow \uparrow$ credit $\longrightarrow \uparrow$ investment

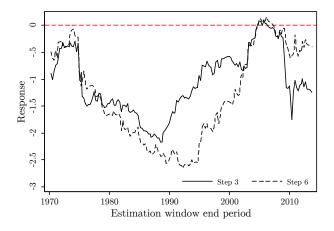
◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Block Bootstrap Rolling VARs


Figure : Rolling IRF (IFA share \rightarrow Investment)

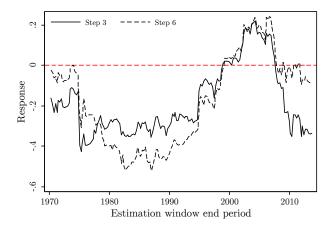
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Block Bootstrap Rolling VARs



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Block Bootstrap Rolling VARs


Figure : Rolling IRF (IFA share \rightarrow Investment)

< ≣ >

Block Bootstrap Rolling VARs

Figure : Rolling IRF (IFA share \rightarrow Credit)

(4月) (日)

< ≣ >

Block Bootstrap Rolling VARs

- Higher intra-financial lending is associated with slower investment
- May operate through credit channel
- No support for financial efficiency view
- Support for both financial inefficiency and instability views
- Dramatic increase in intra-financial lending has probably lowered investment

イロト イポト イヨト イヨト

Block Bootstrap Rolling VARs

Thank You

Juan Antonio Montecino and Gerald Epstein Intra-Financial Lending, Credit, and Capital Formation

<ロ> (四) (四) (注) (注) (三)

Block Bootstrap Rolling VARs

Table : Granger causality tests

Equation	Excluded	χ^2			
Investment					
	IFA share	18.38^{***}			
	Credit	20.162***			
	All	46.246***			
IFA share					
	Investment	15.510^{***}			
	Credit	8.302**			
	All	31.978^{***}			
Credit					
	Investment	4.318			
	IFA share	10.525^{***}			
	All	13.466^{***}			
*** p<0.01, ** p<0.05, * p<0.1					

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Block Bootstrap Rolling VARs

Table : Jarque-Bera residual normality test and Lagrange multiplier autocorrelation test

	χ^2
IFA share	733.324***
Credit	23.418***
Investment	21.054***
All	777.797***

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Block Bootstrap Rolling VARs

Figure : Investment equation robustness tests

	1950Q1-2012Q4			1950Q1-1999Q4			
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	
IFA share (t-1)	-0.113	-0.151	-0.132	-0.060	-0.057	-0.055	
	(0.113)	(0.114)	(0.114)	(0.139)	(0.140)	(0.138)	
IFA share (t-2)	-0.228^{**}	-0.240^{**}	-0.231^{**}	-0.459^{***}	-0.454^{***}	-0.386^{***}	
	(0.112)	(0.111)	(0.112)	(0.141)	(0.140)	(0.141)	
Credit (t-1)	0.539^{***}	0.539^{***}	0.555^{***}	0.579^{**}	0.538^{**}	0.557^{**}	
	(0.171)	(0.171)	(0.170)	(0.230)	(0.237)	(0.233)	
Credit (t-2)	-0.128	-0.105	-0.107	0.120	0.140	0.111	
	(0.174)	(0.173)	(0.173)	(0.243)	(0.243)	(0.242)	
Investment (t-1)	0.708^{***}	0.682^{***}	0.643^{***}	0.630***	0.622^{***}	0.547^{***}	
	(0.064)	(0.064)	(0.067)	(0.070)	(0.071)	(0.076)	
Investment (t-2)	-0.062	-0.035	0.028	-0.037	-0.030	0.074	
	(0.058)	(0.059)	(0.066)	(0.063)	(0.063)	(0.074)	
Constant	0.696	0.951	0.573	0.303	0.803	0.331	
	(0.438)	(0.659)	(0.682)	(0.561)	(0.690)	(0.708)	
Observations	250	250	249	198	198	197	
Additional controls							
Recession dummy	✓	\checkmark	\checkmark	✓	✓	√	
T-bill	✓	√	\checkmark	✓	✓	✓	
Decade dummies		~	\checkmark		✓	✓	
Corporate profits			\checkmark			\checkmark	
	5	Standard er	rors in paren	theses			

*** p<0.01, ** p<0.05, * p<0.1

Juan Antonio Montecino and Gerald Epstein

Intra-Financial Lending, Credit, and Capital Formation

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで